New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations
Abstract
1. Introduction
- the method gives usually sharp results only if ;
- the method is not capable of detecting the potential dependence of the oscillation criteria on .
2. Preliminaries and the Method Description
2.1. Definitions of the Sequences and
- for ( and ) or ( and ):
- for ( and ):
- for ( and ):
- for ( and ) or ( and ):and
- for ( and ):and
- for ( and ):and
- 1.
- for ( and ) or ( and ), the equationhas a solution ;
- 2.
- for ( and ), the systemhas a solution ;
- 3.
- for ( and ), the equationhas a solution .
2.2. The Method Description
3. Main Results
- (i)
- and ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- ;
- (vi)
- the functionis positive and for anyandeventually.
- (vii)
- ;
- (viii)
- ;
- (ix)
- ;
- (x)
- ;
- (xi)
- for (, ) or (, ) and any ;for , and any ;for , and any .
- (i)n
- ;
- (ii)n
- ;
- (iii)n
- for (, ) or (, ) and any ;for (, ) and any ;for (, ) and any .
- We show by induction on n that for arbitrary and :(I)n(II)nand(III)nwhereFor , the conclusion follows from (vii), (ix) and (xi) withClearly,Now, assume that (I)–(III) hold for some and we will show that they hold for , with and defined by:
- (a)
- for either ( and ) or ( and ):
- (b)
- for ( and ):
- (c)
- for ( and ):
for . Clearly, in all three cases, we haveandrespectively.Using (III) in (13), we see thatAs in the case , using (II) and (7), we obtainEmploying (I) in the above inequality, we obtainthat is,Hence, (I) holds.Now, we apply (III) in (12) and use (II) twice: once as a monotone property and then as a correponding inequality:SetBy straightforward computation, we see thatwhere we use (20). Hence, either or eventually. If we suppose that holds, then, in view of (19), we findthat is,which is in contradiction withHence, and so (II) holds. The proof of (III) proceeds in the same way as for and hence we omit it. - To prove the statement, we claim that (I) and (II) implies (i) and (ii) for . Note that (iii) is only a simple consequence of the first two parts. Clearly, (I) and (II) correspond toandrespectively. Then, by virtue of (ii) and (v), it is easy to see thatUsing this and (8), we haveandwhere we used that and are arbitrary. Therefore, (21) and (22) becomeandfor , which proves our claim.
- 1.
- ;
- 2.
- .
- 1.
- First, letSincecondition (C) from Theorem 2 reduces toNote that (30) is sharp for the oscillation of the Euler type half-linear delay differential equationsince (31) has a nonoscillatory solution , ifObviously, the function completely supresses the influence of the function in the final oscillation criterion, while the existing conditions (28) and (29) (as well as all the other ones from the references used in the paper) do not depend on at all.
- 2.
- 3.
- Finally, letSincecondition (C) from Theorem 2 reduces toAs well as in cases 1 and 2, this condition becomes sharp for . Moreover, it is obvious that the delay function affects the criterion via the term .
4. Further Remarks, Open Problems and Research Directions
- 1.
- 2.
- neutral differential equations of the form (1) with different ranges of than those in(H5), mainly or ;
- 3.
- neutral differential equations of the form (1) with more general function , involving, e.g.,
- (a)
- mixed (delayed and advanced) neutral terms:
- (b)
- mixed (sublinear and superlinear) neutral terms
- (c)
- mixed (positive and negative) neutral terms
- 1.
- 2.
- 3.
- corresponding classes of functional difference equations (for first such extension of the approach, see the very recent contribution [57]).
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Partial neutral functional differential equations. Rev. Roum. Math. Pures Appl. 1994, 39, 339–344. [Google Scholar]
- MacDonald, N. Biological Delay Systems: Linear Stability Theory; Cambridge Studies in Mathematical Biology; Cambridge University Press: Cambridge, UK, 1989; Volume 8. [Google Scholar]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]
- Bazighifan, O.; Cesarano, C. Some new oscillation criteria for second order neutral differential equations with delayed arguments. Mathematics 2019, 7, 619. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative properties of solutions of second-order neutral differential equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.; Jadlovská, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp oscillation criteria for second-order neutral delay differential equations. Math. Methods Appl. Sci. 2020, 43, 10041–10053. [Google Scholar] [CrossRef]
- Candan, T. Oscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments. Appl. Math. Comput. 2015, 262, 199–203. [Google Scholar] [CrossRef]
- Dong, J.G. Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Comput. Math. Appl. 2010, 59, 3710–3717. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for nonlinear functional neutral dynamic equations on time scales. J. Differ. Equ. Appl. 2009, 15, 1097–1116. [Google Scholar] [CrossRef]
- Fišnarová, S.; Mařík, R. Oscillation criteria for neutral second-order half-linear differential equations with applications to Euler type equations. Bound. Value Probl. 2014, 2014, 1–14. [Google Scholar] [CrossRef][Green Version]
- Fišnarová, S.; Mařík, R. On eventually positive solutions of quasilinear second-order neutral differential equations. Abstr. Appl. Anal. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Fišnarová, S. Oscillation criteria for neutral half-linear differential equations without commutativity in deviating arguments. Electron. J. Qual. Theory Differ. Equ. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Fišnarová, S.; Mařík, R. Oscillation of neutral second order half-linear differential equations without commutativity in deviating arguments. Math. Slovaca 2017, 67, 701–718. [Google Scholar] [CrossRef]
- Fišnarová, S.; Mařík, R. Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments. Math. Slovaca 2020, 70, 389–400. [Google Scholar] [CrossRef]
- Grace, S.R.; Džurina, J.; Jadlovská, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequalities Appl. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Han, Z.; Li, T.; Sun, S.; Sun, Y. Remarks on the paper [Appl. Math. Comput. 207 (2009) 388–396]. Appl. Math. Comput. 2010, 215, 3998–4007. [Google Scholar] [CrossRef]
- Li, T.; Thandapani, E.; Graef, J.R.; Tunç, E. Oscillation of second-order Emden-Fowler neutral differential equations. Nonlinear Stud. 2013, 20, 1–8. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation of second-order neutral differential equations. Math. Nachrichten 2015, 288, 1150–1162. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatshefte FÜR Math. 2017, 184, 489–500. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Han, Z. New oscillation criterion for Emden–Fowler type nonlinear neutral delay differential equations. J. Appl. Math. Comput. 2019, 60, 191–200. [Google Scholar] [CrossRef]
- Liu, L.; Bai, Y. New oscillation criteria for second-order nonlinear neutral delay differential equations. J. Comput. Appl. Math. 2009, 231, 657–663, Erratum to: J. Comput. Appl. Math. 2010, 233, 2755. [Google Scholar] [CrossRef]
- Liu, H.; Meng, F.; Liu, P. Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl. Math. Comput. 2012, 219, 2739–2748. [Google Scholar] [CrossRef]
- Mařík, R. Remarks on the paper by Sun and Meng, Appl. Math. Comput. 174 (2006). Appl. Math. Comput. 2014, 248, 309–313. [Google Scholar] [CrossRef]
- Moaaz, O.; Anis, M.; Baleanu, D.; Muhib, A. More effective criteria for oscillation of second-order differential equations with neutral arguments. Mathematics 2020, 8, 986. [Google Scholar] [CrossRef]
- Meng, F.; Xu, R. Oscillation criteria for certain even order quasi-linear neutral differential equations with deviating arguments. Appl. Math. Comput. 2007, 190, 458–464. [Google Scholar] [CrossRef]
- Moaaz, O. New criteria for oscillation of nonlinear neutral differential equations. Adv. Differ. Equ. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Pátíková, Z.; Fišnarová, S. Use of the Modified Riccati Technique for Neutral Half-Linear Differential Equations. Mathematics 2021, 9, 235. [Google Scholar] [CrossRef]
- Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Santra, S.S. Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients. Math. Bohem. 2021, 146, 185–197. [Google Scholar] [CrossRef]
- Tunç, E.; Kaymaz, A. On oscillation of second-order linear neutral differential equations with damping term. Dyn. Syst. Appl. 2019, 28, 289–301. [Google Scholar]
- Tunç, E.; Özdemir, O. On the oscillation of second-order half-linear functional differential equations with mixed neutral term. J. Taibah Univ. Sci. 2019, 13, 481–489. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Zhang, J.; Xiao, J. Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type. J. Inequalities Appl. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Xu, R.; Meng, F. Some new oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 2006, 182, 797–803. [Google Scholar] [CrossRef]
- Xu, R.; Meng, F. New Kamenev-type oscillation criteria for second order neutral nonlinear differential equations. Appl. Math. Comput. 2007, 188, 1364–1370. [Google Scholar] [CrossRef]
- Xu, R.; Meng, F. Oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 2007, 192, 216–222. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Wang, Q.R. Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 2010, 216, 2837–2848. [Google Scholar] [CrossRef]
- Džurina, J.; Stavroulakis, I.P. Oscillation criteria for second-order delay differential equations. Appl. Math. Comput. 2003, 140, 445–453. [Google Scholar] [CrossRef]
- Sun, Y.G.; Meng, F.W. Note on the paper of Džurina and Stavroulakis: “Oscillation criteria for second-order delay differential equations” [Appl. Math. Comput. 140 (2003), 445–453]. Appl. Math. Comput. 2006, 174, 1634–1641. [Google Scholar] [CrossRef]
- Wu, H.; Erbe, L.; Peterson, A. Oscillation of solution to second-order half-linear delay dynamic equations on time scales. Electron. J. Differ. Equ. 2016, 2016, 1–15. [Google Scholar]
- Jadlovská, I.; Džurina, J. Kneser-type oscillation criteria for second-order half-linear delay differential equations. Appl. Math. Comput. 2020, 380, 125289. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments. Appl. Math. Comput. 2021, 397, 125915. [Google Scholar]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dyn. Syst. Theory 2009, 9, 51–68. [Google Scholar]
- Baculíková, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Li, T.; Han, Z.; Zhang, C.; Sun, S. On the oscillation of second-order Emden-Fowler neutral differential equations. J. Appl. Math. Comput. 2011, 37, 601–610. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V.; Zhang, C. Oscillation of second-order neutral differential equations. Funkcial. Ekvac. 2013, 56, 111–120. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V.; Zhang, C. Oscillation results for second-order nonlinear neutral differential equations. Adv. Differ. Equ. 2013, 1–13. [Google Scholar] [CrossRef]
- Ye, L.; Xu, Z. Oscillation criteria for second order quasilinear neutral delay differential equations. Appl. Math. Comput. 2009, 207, 388–396. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 2015, 38, 761–778. [Google Scholar] [CrossRef]
- Jadlovská, I. Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations. Appl. Math. Lett. 2020, 106, 106354. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. A sharp oscillation criterion for second-order half-linear advanced differential equations. Acta Math. Hung. 2021, 163, 552–562. [Google Scholar] [CrossRef]
- Graef, J.R.; Jadlovská, I.; Tunç, E. Sharp asymptotic results for third-order linear delay differential equations. J. Appl. Anal. Comput. 2021. to appear. [Google Scholar]
- Jadlovská, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics 2021, 9, 1675. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Shi, S.; Han, Z. A new approach to the oscillation for the difference equations with several variable advanced arguments. J. Appl. Math. Comput. 2021, 2021, 1–14. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T. Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 2015, 254, 408–418. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Erbe, L.; Peterson, A.; Saker, S.H. Oscillation criteria for second-order nonlinear dynamic equations on time scales. J. Lond. Math. Soc. 2003, 67, 701–714. [Google Scholar] [CrossRef]
- Deng, X.H.; Wang, Q.R.; Zhou, Z. Oscillation criteria for second order nonlinear delay dynamic equations on time scales. Appl. Math. Comput. 2015, 269, 834–840. [Google Scholar] [CrossRef]
- Hassan, T.S.; El-Nabulsi, R.A.; Abdel Menaem, A. Amended Criteria of Oscillation for Nonlinear Functional Dynamic Equations of Second-Order. Mathematics 2021, 9, 1191. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sun, Y.; Menaem, A.A. Improved Oscillation Results for Functional Nonlinear Dynamic Equations of Second Order. Mathematics 2020, 8, 1897. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. Appl. Math. 2006, 187, 123–141. [Google Scholar] [CrossRef]
- Saker, S.H.; Agarwal, R.P.; O’regan, D. Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl. Anal. 2007, 86, 1–17. [Google Scholar] [CrossRef]
- Saker, S.; Sethki, A. Riccati Technique and Oscillation of Second Order Nonlinear Neutral Delay Dynamic Equations. J. Comput. Anal. Appl. 2021, 2021, 266. [Google Scholar]
- Shi, Y.; Han, Z.; Sun, Y. Oscillation criteria for a generalized Emden-Fowler dynamic equation on time scales. Adv. Differ. Equ. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Sui, Y.; Han, Z. Oscillation of second order neutral dynamic equations with deviating arguments on time scales. Adv. Differ. Equ. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadlovská, I. New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations. Mathematics 2021, 9, 2089. https://doi.org/10.3390/math9172089
Jadlovská I. New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations. Mathematics. 2021; 9(17):2089. https://doi.org/10.3390/math9172089
Chicago/Turabian StyleJadlovská, Irena. 2021. "New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations" Mathematics 9, no. 17: 2089. https://doi.org/10.3390/math9172089
APA StyleJadlovská, I. (2021). New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations. Mathematics, 9(17), 2089. https://doi.org/10.3390/math9172089
