Next Article in Journal
A Study on Facial Expression Change Detection Using Machine Learning Methods with Feature Selection Technique
Next Article in Special Issue
New Properties and Identities for Fibonacci Finite Operator Quaternions
Previous Article in Journal
The Lengths of Certain Real Conjugacy Classes and the Related Prime Graph
Previous Article in Special Issue
Regularities in Ordered n-Ary Semihypergroups
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Zero-Density Results for Automorphic L-Functions of GL(n)

School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China
*
Author to whom correspondence should be addressed.
Mathematics 2021, 9(17), 2061; https://doi.org/10.3390/math9172061
Submission received: 17 June 2021 / Revised: 11 August 2021 / Accepted: 24 August 2021 / Published: 26 August 2021

Abstract

:
Let L ( s , π ) be an automorphic L-function of G L ( n ) , where π is an automorphic representation of group G L ( n ) over rational number field Q . In this paper, we study the zero-density estimates for L ( s , π ) . Define N π ( σ , T 1 , T 2 ) = ♯ { ρ = β + i γ : L ( ρ , π ) = 0, σ < β < 1 , T 1 γ T 2 }, where 0 σ < 1 and T 1 < T 2 . We first establish an upper bound for N π ( σ , T , 2 T ) when σ is close to 1. Then we restrict the imaginary part γ into a narrow strip [ T , T + T α ] with 0 < α 1 and prove some new zero-density results on N π ( σ , T , T + T α ) under specific conditions, which improves previous results when σ near 3 4 and 1, respectively. The proofs rely on the zero detecting method and the Halász-Montgomery method.
MSC:
11F66; 11M26; 11M41

1. Introduction

Let π be an automorphic representation of group G L ( n ) over rational number field Q . Then the automorphic (finite-part) L-function related to π can be defined as
L ( s , π ) = n = 1 A π ( n ) n s ( s > 1 ) .
Furthermore, L ( s , π ) satisfies the Euler product
L ( s , π ) = p < j = 1 m ( 1 α π ( p , j ) p s ) 1 ( s > 1 ) ,
where α π ( p , j ) are the Langlands parameters of π . The automorphic L-function L ( s , π ) can be analytically continued to the whole complex plane and has a standard functional equation.
The zero estimates of L ( s , π ) is an important topic in number theory and has many applications in various problems, for instance, the applications in the composition of integers and integral ideals (see [1,2,3,4], etc.) in divisor problems (see [5,6,7,8], etc.) and in mean value estimates involving Hecke eigenvalues (see [9,10,11,12], etc.). Many scholars have established zero-density estimates of L ( s , π ) (see [13,14,15], etc.). We know that all non-trivial zeros of L ( s , π ) are included in the critical strip 0 < s < 1 . As we all know, the Generalized Riemann Hypothesis ( G R H ) conjectures that all these non-trivial zeros are on the critical line s = 1 2 . Now the G R H is still open. Then it is natural to study the zero-density estimates of L ( s , π ) in a rectangle including the critical line.
Let
N π ( σ , T 1 , T 2 ) = { ρ = β + i γ : L ( ρ , π ) = 0 , σ < β < 1 , T 1 γ T 2 } ,
where 0 σ < 1 and T 1 < T 2 . Then the famous “density hypothesis” is
N π ( σ , T , 2 T ) T 2 ( 1 σ ) + ε , 1 2 σ < 1 .
Here we take the Riemann zeta function ζ ( s ) as an example of the automorphic L-function L ( s , π ) . To specify π by cusp forms and Maass forms, we refer to the references [16,17,18] and references therein. From the works of Ingham [19] and Huxley [20] we know that
N ζ ( σ , T , 2 T ) T 3 ( 1 σ ) 2 σ + ε , if 1 2 σ < 3 4 , T 3 ( 1 σ ) 3 σ 1 + ε , if 3 4 σ < 1 .
About the results on the density hypothesis, in 1977, Jutila [21] proved that
N ζ ( σ , T , 2 T ) T 2 ( 1 σ ) + ε , 11 14 σ < 1 .
In 2000, Bourgain [22] improved Jutila’s result to
N ζ ( σ , T , 2 T ) T 2 ( 1 σ ) + ε , 25 32 σ < 1 .
For 1 2 u 1 , let
M ( u , T ) = max 1 γ T | ζ ( u + i γ ) | .
When σ is close to 1, Ivić (see [23], Theorem 11.3) proved that for 9 10 σ 1 ,
N ζ ( σ , T , T ) M ( 5 σ 4 , 3 T ) 7 6 log 169 12 T .
In this paper, motivated by Ivić’s work, we first establish an upper bound of N π ( σ , T , 2 T ) , when σ is close to 1 in the following theorem.
Theorem 1.
Let M 1 ( u , T ) = max 1 γ T | ζ ( u + i γ ) | and M 2 ( u , T ) = max 1 γ T | L ( u + i γ , π ) | for 1 2 u < 1 , T 3 . Then for 9 10 σ 1 we have
N π ( σ , T , 2 T ) M 1 ( 5 σ 4 , 3 T ) 2 3 M 2 ( 5 σ 4 , 4 T ) 1 2 T ε .
Remark 1.
Since L ( s , π ) is a general automorphic L-function in Theorem 1, the mean value estimate now is worse than the case of the Rieman zeta function, which results in the T ε (see the argument around (22) for details).
Now we restrict the imaginary part γ into a narrow strip [ T , T + T α ] and suppose
T T + T α L 1 2 + i t , π 2 l d t ε , π T θ + ε ,
for certain 0 < α 1 and θ α , where l 1 is an integer and T 3 . Ye and Zhang [24] established some bounds for N π ( σ , T , T + T α ) with 1 2 σ < 1 . Later, Dong, Liu and Zhang [25] obtained a sharper bound for N π ( σ , T , T + T α ) when σ is close to 1 and show a range of σ for which the density hypothesis holds. We shall keep on studying zero-density estimates for L ( s , π ) in this strip and improve previous results when σ near 3 4 and 1, respectively.
Theorem 2.
Let L ( s , π ) be an automorphic L-function satisfying (3). Then for 3 4 σ 10 13 and 2 σ ( 2 α θ 16 θ + 3 α 2 l 6 α 2 ) 4 α θ 20 θ + 3 α 2 l 12 α 2 we have
N π ( σ , T , T + T α ) T 3 α 2 ( 1 σ ) α ( 1 σ ) 5 + 8 σ + ε ,
and for 10 13 < σ < 1 and 2 σ ( 6 θ α 22 θ + 9 l α 2 18 α 2 ) 12 θ α 20 θ + 9 l α 2 36 α 2 , we have
N π ( σ , T , T + T α ) T 9 α 2 ( 1 σ ) 3 α ( 1 σ ) + 11 σ 5 + ε .
Theorem 3.
Let L ( s , π ) be an automorphic L-function satisfying (3). Then for 3 4 σ 10 13 and 2 σ ( α θ 4 θ + 2 α 2 l 2 α 2 ) 2 α θ 5 θ + 2 α 2 l 4 α 2 , we have
N π ( σ , T , T + T α ) T 4 α 2 ( 1 σ ) 2 α ( 1 σ ) 5 + 8 σ + ε ,
and for 10 13 < σ < 1 and σ ( 6 θ α 12 α 2 11 θ + 12 l α 2 ) 6 θ α 12 α 2 5 θ + 6 l α 2 , we have
N π ( σ , T , T + T α ) T 12 α 2 ( 1 σ ) 6 α ( 1 σ ) + 11 σ 5 + ε .
Notation 1.
Throughout this paper, the letter ε represents a sufficiently small positive number, whose value may change from statement to statement. Constants, both explicit and implicit, in Vinogradov symbols ≪ may depend on ε and π.

2. Some Lemmas

Lemma 1.
For L ( s , π ) we have
N π ( 0 , T , T + 1 ) = m 2 π log T ( 1 + o ( 1 ) ) .
Proof. 
We can get this lemma by a standard winding number argument on (3) as in Davenport [26] and Rudnick and Sarnak [15]. □
Lemma 2
([27], Lemma 1.7). Let ξ , φ 1 , , φ R be arbitrary vectors in an inner-product vector space over C . If a = { a n } n = 1 and b = { b n } n = 1 are two vectors of C , then the inner-product of a and b is defined as
( a , b ) = n = 1 a n b ¯ n .
Then we have the inequality
r R | ( ξ , φ r ) | ξ r , s R | ( φ r , φ s ) | 1 2 ,
where a 2 = ( a , a ) .
Lemma 3
([23], (4.60)). Suppose that Y , h > 0 and k 1 is an integer, we have
n = 1 e ( n Y ) h d k ( n ) n s = ( 2 π i ) 1 2 i 2 + ζ k ( s + w ) Y w Γ ( 1 + w h ) w 1 d w .
Lemma 4.
For a fixed θ satisfying 1 2 < θ < 1 , define
S ( θ ) = r , s R | ζ ( θ + i t r i t s + i v ) | 2 ,
where T t r T + T α ( 1 r R ) and v is defined by
| ζ ( θ + i t r i t s + i v ) | = max log 2 T v log 2 T | ζ ( θ + i t r i t s + i v ) | .
Suppose that | t r t s | 3 log 4 T for r s R , then we have
S 3 4 T ε R 2 + R 11 8 T α 4 .
Proof. 
We can get this lemma by following the argument of ([23], Lemma 11.6). The main difference is that the interval of t r now is T t r T + T α . □

3. Proof of Theorem 1

We first consider the number of zeros ρ = β + i γ of L ( s , π ) in the rectangle
σ < β < 1 , T γ T + T α ,
where σ 1 2 , T 3 , and 0 < α 1 . We define μ π ( n ) by
1 L ( s , π ) = n = 1 μ π ( n ) n s
for s > 1 . By the Euler product of L ( s , π ) in (1), we have
1 L ( s , π ) = p < j = 1 m ( 1 α π ( p , j ) p s ) .
Consequently μ π ( n ) is a multiplicative function and
μ π ( 1 ) = 1 ,
μ π ( p k ) = ( 1 ) k 1 j 1 < < j k m v = 1 k α π ( p , j v )
for k = 1 , , m and μ π ( p k ) = 0 for k > m . Then from L ( s , π ) · 1 L ( s , π ) = 1 , we get
d | n μ π ( d ) A π ( n d ) = 1 , n = 1 , 0 , n > 1 .
Assume further that s = σ + i t , T t T + T α , 1 X Y T A for some A > 0 , and X = X ( T ) and Y = Y ( T ) are two parameters to be decided later. Let
M X ( s , π ) = n X μ π ( n ) n s .
Then we have
L ( s , π ) M X ( s , π ) = n = 1 b π ( n ) n s ,
for s > 1 , where
b π ( n ) = 1 , if n = 1 , 0 , if 2 n X , d | n d X μ π ( d ) A π ( n d ) , if n > X .
In terms of (7), for σ > 1 and s > 0 , we obtain
1 2 π i σ L ( s + ω , π ) M X ( s + ω , π ) Γ ( ω ) Y ω d ω = 1 2 π i σ n = 1 b π ( n ) n s + ω Γ ( ω ) Y ω d ω .
From the inverse Mellin transform of Γ ( ω ) , the right-hand side of the above formula can be written as
1 2 π i σ Γ ( ω ) Y ω d ω + n > X b π ( n ) n s 1 2 π i σ Γ ( ω ) Y n ω d ω = e 1 Y + n > X b π ( n ) n s e n Y .
Hence we have, for σ > 1 and s > 0 ,
e 1 Y + n > X b π ( n ) n s e n Y = 1 2 π i σ L ( s + ω , π ) M X ( s + ω , π ) Γ ( ω ) Y ω d ω .
Now we move the line of integration of (8) to ω = u β < 0 for some suitable 1 2 u < 1 . Then integral on the right hand of (8) becomes
L ( s , π ) M X ( s , π ) + 1 2 π i ( u β ) L ( s + ω , π ) M X ( s + ω , π ) Γ ( ω ) Y ω d ω ,
where L ( s , π ) M X ( s , π ) is the residue of the integrand at ω = 0 . Setting ω = u β + i v and taking s equal to a non-trivial zero ρ = β + i γ , we have
e 1 Y + n > X b π ( n ) n ρ e n Y = 1 2 π + L ( u + i γ + i v , π ) M X ( u + i γ + i v , π ) Γ ( u β + i v ) Y u β + i v d v .
Since e 1 Y 1 and n > Y log 2 Y b π ( n ) n ρ e n Y contribute o ( 1 ) as Y , a non-trivial zero ρ = β + i γ counted in N π ( σ , T , T + T α ) satisfies either
1 X < n Y log 2 Y b π ( n ) n ρ e n Y
or
1 + L ( u + i γ + i v , π ) M X ( u + i γ + i v , π ) Γ ( u β + i v ) Y u β + i v d v .
For the integral in (11) we have
log 2 T + log 2 T + = o ( 1 )
due to the fact that they are absolutely convergent. By Stirling’s formula again, we can further remove the Γ function in (11) and get that a non-trivial zero ρ = β + i γ counted in N π ( σ , T , T + T α ) satisfies either (10) or
1 Y u β log 2 T log 2 T L ( u + i γ + i v , π ) M X ( u + i γ + i v , π ) d v .
We divide the elongated rectangle (6) into successive rectangles of length 3 log 4 T noting Lemma 1. These rectangles start at
σ < β < 1 , T γ T + 3 log 4 T
and the last one may have a shorter length. Call these smaller rectangles as I 1 , I 2 , . The number of zeros are denoted by A i j in all odd-numbered rectangles if j = 1 or in all even-numbered rectangles if j = 2 , which satisfy (10) if i = 1 , or (12) if i = 2 . Then, we have
N π ( σ , T , T + T α ) A 11 + A 12 + A 21 + A 22 .
We can get a sequence of zeros ρ r ( i j ) = β r ( i j ) + i γ r ( i j ) counted in A i j for r = 1 , , R i j , if we choose a zero from each rectangle which contains at least one zero. Here, R i j is the number of rectangles that contains at least one zero counted in A i j . By Lemma 1, we note that each rectangle contains at most 3 m 2 π log 5 T ( 1 + o ( 1 ) ) zeros. Consequently, we have
N π ( σ , T , T + T α ) ( R 11 + R 12 + R 21 + R 22 ) log 5 T .
Now we begin to estimate R 1 j . By a dyadic subdivision on the sum in (10), we know that each ρ r ( 1 j ) = β r ( 1 j ) + i γ r ( 1 j ) counted in R 1 j satisfies
1 + Y 2 < n < Y b π ( n ) n ρ ( 1 j ) e n Y + Y < n < 2 Y b π ( n ) n ρ ( 1 j ) e n Y + ,
where there are O ( log ( Y log 2 Y ) ) terms. Then there exists M r = 2 v r Y for some v r Z and X M r Y log 2 Y such that
M r < n < 2 M r b π ( n ) n ρ ( 1 j ) e n Y 1 log Y .
Raising (16) to kth power we get
M r k < n ( 2 M r ) k c π ( n ) n ρ ( 1 j ) 1 log k Y ,
with
c π ( n ) = n = n 1 n 2 n k M r < n i 2 M r b π ( n 1 ) b π ( n k ) e n 1 + n 2 + + n k Y
and k is a natural number depending on M r such that M r k = N , ( 2 M r ) k = P T c , from where k 1 and P N . We split the sum in (17) into subsums of length N and choose k so that M r k Y r log 2 r Y < M r k + 1 , where r is a fixed integer and k r 1 is satisfied. Then (17) can be written as
N < n 2 N c π ( n ) n ρ ( 1 j ) 1 log D Y
for some D 1 and
Y r 2 r + 1 log 2 r 2 r + 1 Y N Y r log 2 r Y .
By partial summation and (18), we have
R 1 j log D T { ρ ( 1 j ) ( | N < n 2 N c π ( n ) n σ i γ r ( 1 j ) | N σ β r ( 1 j ) + N 2 N | N < n u c π ( n ) n σ i γ r ( 1 j ) | N σ β r ( 1 j ) 1 d u ) } .
We relabel c π ( n ) to satisfy c π ( n ) = 0 for n > u . Then simplifying (20), we can get
R 1 j log D T r = 1 R 1 j N < n 2 N c π ( n ) n σ i γ r ( 1 j ) .
From now on, we let α = 1 in (6). Now we apply Lemma 2 to (21) and take ξ = { ξ n } n = 1 with c π ( n ) n ε , where
ξ n = c π ( n ) ( e n 2 N e n N ) 1 2 n σ , N < n 2 N , 0 , o t h e r w i s e ,
and φ r = { φ r , n } n = 1 with φ r , n = ( e n 2 N e n N ) 1 2 n i γ r ( 1 j ) ( n = 1 , 2 , 3 ) . Denoting the imaginary part of representative zeros of R 1 j by γ 1 ( 1 j ) , , γ R 1 j ( 1 j ) , we then have
R 1 j 2 log 2 D T r R 1 j | N < n 2 N ξ n φ r , n | 2 log 2 D T ξ 2 r , s R 1 j | ( φ r , φ s ) | log 2 D T N < n 2 N c π 2 ( n ) e 2 n Y n 2 σ r = s | ( φ r , φ s ) | + r s | ( φ r , φ s ) | log 2 D T N < n 2 N c π 2 ( n ) n 2 σ e 2 n Y R 1 j N + r s R 1 j H ( i γ r ( 1 j ) i γ s ( 1 j ) ) T ε N 2 2 σ R 1 j + r s R 1 j H ( i γ r ( 1 j ) i γ s ( 1 j ) ) ,
where
H ( i t ) = n = 1 ( e n 2 N e n N ) n i t = 1 2 π i 2 i 2 + i ζ ( w + i t ) ( ( 2 N ) w N w ) Γ ( w ) d w ,
since 1 e n 2 N e n N 1 for N < n 2 N , ξ 2 T ε N 1 2 σ and H ( 0 ) N . Thus, we have
H ( i γ r ( 1 j ) i γ s ( 1 j ) ) = 1 2 π i 2 i 2 + i ζ ( w + i γ r ( 1 j ) i γ s ( 1 j ) ) ( 2 N ) w N w Γ ( w ) d w .
Moving the line of integration in (24) to w = u < 1 , we encounter a simple pole at w = 1 i γ r ( 1 j ) + i γ s ( 1 j ) with residue N e | γ s ( 1 j ) γ r ( 1 j ) | , so that
H ( i γ r ( 1 j ) i γ s ( 1 j ) ) = 1 2 π i u i u + i ζ ( w + i γ r ( 1 j ) i γ s ( 1 j ) ) ( 2 N ) w N w Γ ( w ) d w + O ( N e | γ s ( 1 j ) γ r ( 1 j ) | ) .
In view of | Γ ( s ) | = ( 2 π ) 1 2 | t | σ 1 2 e π t 2 ( 1 + O ( | t | 1 ) ) , the integral in (25) is o ( 1 ) for N T c if | w | log 2 T , which gives
r s R 1 j | H ( i γ r ( 1 j ) i γ s ( 1 j ) ) | N r s R 1 j e | γ s ( 1 j ) γ r ( 1 j ) | + o ( R 1 j 2 ) + N u log 2 T log 2 T r s R 1 j | ζ ( u + i γ r ( 1 j ) i γ s ( 1 j ) + i v ) | d v .
Since the γ r ( 1 j ) s are at least 3 log 4 T apart, the first sum on the right side of (26) is O ( R 1 j ) . For the second sum on the right side of (26), we fix each s and let τ r = γ r ( 1 j ) γ s ( 1 j ) + v . Then we have | τ r | 3 T for r = 1 , 2 , , R 1 j and | τ r 1 τ r 2 | 3 log 4 T for r 1 r 2 . Hence we get
r s R 1 j H ( i γ r ( 1 j ) i γ s ( 1 j ) ) R 1 j 2 N u M 1 ( u , 3 T ) log 2 T .
Inserting (27) into (22) we obtain
R 1 j 2 T ε R 1 j N 2 2 σ + R 1 j 2 N 1 + u 2 σ M 1 ( u , 3 T ) .
Then we have for σ u + 1 2 ,
R 1 j max X N Y log 2 Y N 2 2 σ T ε Y 2 2 σ T ε ,
if X 2 σ 1 u M 1 ( u , 3 T ) T ε .
Now we turn to estimate R 2 j . We may suppose first that σ < 1 C log T in view of the zero-free region. Note that in this case the zeros ρ r ( 2 j ) = β r ( 2 j ) + i γ r ( 2 j ) , j = 1 , 2 satisfy
1 Y u β log 2 T log 2 T L ( u + i γ r ( 2 j ) + i v , π ) M X ( u + i γ r ( 2 j ) + i v , π ) d v .
From the mean value theorem for integration, we can see that there exists t r ( 2 j ) = γ r ( 2 j ) + v , which makes (29) become
1 Y u β L ( u + i t r ( 2 j ) , π ) M X ( u + i t r ( 2 j ) , π ) log 2 T .
Thus, from (30) we get
M X ( u + i t r ( 2 j ) , π ) Y σ u ( M 2 ( u , 4 T ) log 2 T ) 1
for R 2 j points t r ( 2 j ) such that | t r ( 2 j ) | 4 T . Then there is a number N ( 1 N X ) such that
N < n 2 N μ π ( n ) n u + i t r ( 2 j ) Y σ u ( M 2 ( u , 4 T ) log 2 T ) 1 ,
hence it is easy to get
1 Y u σ M 2 ( u , 4 T ) log 2 T N < n 2 N μ π ( n ) n u + i t r ( 2 j ) .
We can apply Lemma 2 as in the previous case, but now the choice of ξ and φ r are different. We shall take ξ = { ξ n } n = 1 with ξ n = μ π ( n ) ( e n 2 N e n N ) 1 2 n u for N < n 2 N and zero otherwise, φ r = { φ r , n } n = 1 with φ r , n = ( e n 2 N e n N ) 1 2 n i t r ( 2 j ) ( n = 1 , 2 , 3 ) . Then
R 2 j 2 Y 2 u 2 σ M 2 2 ( u , 4 T ) log 4 T r R 2 j | N < n 2 N μ π ( n ) n u + i t r ( 2 j ) | 2 Y 2 u 2 σ M 2 2 ( u , 4 T ) log 4 T ξ 2 r , s R 2 j | ( φ r , φ s ) | Y 2 u 2 σ M 2 2 ( u , 4 T ) N 1 2 u + ε log 4 T R 2 j N + r s R 2 j H ( i t r ( 2 j ) i t s ( 2 j ) ) Y 2 u 2 σ M 2 2 ( u , 4 T ) N 2 2 u R 2 j log 5 T + Y 2 u 2 σ M 2 2 ( u , 4 T ) M 1 ( u , 3 T ) N 1 u R 2 j 2 log 7 T ,
Thus, we have
R 2 j X 2 2 u Y 2 u 2 σ M 2 2 ( u , 4 T ) log 5 T
if
Y 2 σ 2 u M 1 ( u , 3 T ) M 2 2 ( u , 4 T ) X 1 u log 7 T .
Therefore X and Y can be chosen as
X = C 1 M 1 ( u , 3 T ) 1 2 σ 1 u T ε ,
Y = C 2 M 1 ( u , 3 T ) 1 2 σ u 1 M 2 ( u , 4 T ) 1 σ u T ε .
We see that the bound for R 2 j is smaller than the one for R 1 j . Recalling (14) we have
N π ( σ , T , 2 T ) Y 2 2 σ T ε M 1 ( u , 3 T ) 1 2 σ u 1 M 2 ( u , 4 T ) 1 σ u 2 2 σ T ε ,
where 1 2 u 1 , u + 1 2 σ < 1 C log T .
Let u = k σ ( k 1 ) k > 2 . Then in view of (31), we see that it is appropriate to take k = 5 . Hence u = 5 σ 4 , σ u + 1 2 is satisfied and u 1 2 for σ 9 10 . Thus, Theorem 1 follows from (31) with u = 5 σ 4 .

4. Proof of Theorem 2

Throughout the proof of Theorem 2, we restrict the range of zeros to (6). From the estimates of R 1 j 2 in (22), we obtain now
R 1 j 2 T ε N 2 2 σ R 1 j + N 1 2 σ r s R 1 j | H ( i γ r ( 1 j ) i γ s ( 1 j ) ) | .
Recall the functional equation ζ ( s ) = χ ( s ) ζ ( 1 s ) with
χ ( s ) = 2 π t σ + i t 1 2 e i ( t + π 4 ) ( 1 + O | t 1 | ) .
Moving the line of integration in H ( i t ) to w = 1 4 and applying the Cauchy–Schwarz inequality, we get
r s R 1 j | H ( i γ r ( 1 j ) i γ s ( 1 j ) ) | N r s R 1 j e | γ r ( 1 j ) γ s ( 1 j ) | + R 1 j 2 + N 1 4 T α 4 × log 2 T log 2 T r s R 1 j | ζ ( 3 4 + i γ r ( 1 j ) i γ s ( 1 j ) + i v ) | d v R 1 j N + R 1 j 2 + T ε + α 4 N 1 4 R 1 j S ( 3 4 ) 1 2
where the S ( 3 4 ) is from Lemma 4.
Substituting (33) into (32), we can get
R 1 j T ε N 2 2 σ + R 1 j T α 4 + ε N 5 8 σ 4 + T 6 α 5 + ε N 20 32 σ 5 ,
where we used Lemma 4 to S ( 3 4 ) . For R 0 points lying in an interval of length T = T 0 = N 8 σ 5 α ε we have
R 0 T ε ( N 2 2 σ + T 0 6 α 5 N 20 32 σ 5 ) T ε N 2 2 σ f o r 3 4 σ 10 13 .
In (19), we take r = 2 to get Y 4 3 log 8 3 Y N Y 2 log 4 Y and then
R 1 j R 0 1 + T α T 0 T ε N 2 2 σ 1 + T α T 0 T ε Y 4 4 σ + T α Y 8 α ( 1 σ ) + 20 32 σ 3 α
It follows from ([24], (5.21)) that
R 2 j T θ + ε Y l ( 1 2 σ ) .
Consequently, we have
N π ( σ , T , T + T α ) T ε j = 1 2 ( R 1 j + R 2 j ) T ε ( T θ Y l ( 1 2 σ ) + Y 4 4 σ + T α Y 8 α ( 1 σ ) + 20 32 σ 3 α ) .
We set Y 4 4 σ = T α Y 8 α ( 1 σ ) + 20 32 σ 3 α , which is equivalent to Y = T 3 α 2 4 α ( 1 σ ) 20 + 32 σ . Thus, from (36) we get
N π ( σ , T , T + T α ) T ε ( Y 4 4 σ + T θ Y l ( 1 2 σ ) ) = T ε ( T 3 α 2 ( 1 σ ) α ( 1 σ ) 5 + 8 σ + T θ + 3 α 2 l ( 1 2 σ ) 4 α ( 1 σ ) 20 + 32 σ ) .
Comparing the two terms in (37), we can get
N π ( σ , T , T + T α ) T 3 α 2 ( 1 σ ) α ( 1 σ ) 5 + 8 σ + ε
for 2 σ ( 2 α θ 16 θ + 3 α 2 l 6 α 2 ) 4 α θ 20 θ + 3 α 2 l 12 α 2 , from which we complete the proof of the first result of Theorem 2.
For R 0 points lying in an interval of length T = T 0 = N 11 σ 5 3 α , we have
R 0 T ε ( N 2 2 σ + R 0 T 0 α 4 N 5 8 σ 4 ) = T ε ( N 2 2 σ + R 0 N 10 13 σ 12 ) ,
which implies
R 0 T ε N 2 2 σ 1 N 10 13 σ 12 T ε N 2 2 σ for 10 13 < σ < 1 .
Then we have
R 1 j R 0 ( 1 + T α T 0 ) T ε ( N 2 2 σ + T α N 6 α ( 1 σ ) 11 σ + 5 3 α ) T ε ( Y 4 4 σ + T α Y 24 α ( 1 σ ) 44 σ + 20 9 α ) .
Consequently, recalling (35) we have
N π ( σ , T , T + T α ) j = 1 2 ( R 1 j + R 2 j ) log 5 T T ε ( Y 4 4 σ + T α Y 24 α ( 1 σ ) 44 σ + 20 9 α + T θ Y l ( 1 2 σ ) ) .
We choose Y 4 4 σ = T α Y 24 α ( 1 σ ) 44 σ + 20 9 α , which is equivalent to Y = T 9 α 2 12 α ( 1 σ ) + 4 ( 11 σ 5 ) . Thus, from (39) we have
N π ( σ , T , T + T α ) T ε ( Y 4 4 σ + T θ Y l ( 1 2 σ ) ) = T ε ( T 9 α 2 ( 1 σ ) 3 α ( 1 σ ) + 11 σ 5 + T θ + 9 α 2 l ( 1 2 σ ) 12 α ( 1 σ ) + 4 ( 11 σ 5 ) ) .
Comparing the two terms in (40), we can get
N π ( σ , T , T + T α ) T 9 α 2 ( 1 σ ) 3 α ( 1 σ ) + 11 σ 5 + ε
for 2 σ ( 18 α 2 6 θ α + 22 θ 9 l α 2 ) 36 α 2 12 θ α + 20 θ 9 l α 2 , from which we complete the proof of the second result of Theorem 2.

5. Proof of Theorem 3

The proofs of Theorems 2 and 3 are similar, and the main difference is the range of N. Here for completeness, we state some critical details. We let r = 1 in (19) and get Y 1 2 log Y N Y log 2 Y .
Unlike the previous (34), we now have
R 1 j T ε N 2 2 σ + R 1 j T α 4 + ε N 5 8 σ 4 + T 6 α 5 + ε N 20 32 σ 5 .
For R 0 points lying in an interval of length T = T 0 = N 8 σ 5 α ε , we have
R 0 T ε ( N 2 2 σ + T 0 6 α 5 N 20 32 σ 5 ) T ε N 2 2 σ f o r 3 4 σ 10 13 .
Then
R 1 j R 0 ( 1 + T α T 0 ) T ε N 2 2 σ ( 1 + T α T 0 ) T ε ( Y 2 2 σ + T α Y 2 α ( 1 σ ) + 5 8 σ 2 α )
Consequently, recalling (35), we have
N π ( σ , T , T + T α ) T ε j = 1 2 ( R 1 j + R 2 j ) T ε ( T θ Y l ( 1 2 σ ) + Y 2 2 σ + T α Y 2 α ( 1 σ ) + 5 8 σ 2 α ) .
We set Y 2 2 σ = T α Y 2 α ( 1 σ ) + 5 8 σ 2 α which is equivalent to Y = T 2 α 2 2 α ( 1 σ ) 5 + 8 σ . Thus, (41) becomes
N π ( σ , T , T + T α ) T ε ( Y 2 2 σ + T θ Y l ( 1 2 σ ) ) = T ε ( T 4 α 2 ( 1 σ ) 2 α ( 1 σ ) 5 + 8 σ + T θ + 2 α 2 l ( 1 2 σ ) 2 α ( 1 σ ) 5 + 8 σ ) .
Comparing the two terms in (42) we can get
N π ( σ , T , T + T α ) T 4 α 2 ( 1 σ ) 2 α ( 1 σ ) 5 + 8 σ + ε
for 2 σ ( α θ 4 θ + 2 α 2 l 2 α 2 ) 2 α θ 5 θ + 2 α 2 l 4 α 2 , from which we complete the proof of the first result of Theorem 3.
For R 0 points lying in an interval of length T = T 0 = N 11 σ 5 3 α we have
R 0 T ε ( N 2 2 σ + R 0 T 0 α 4 N 5 8 σ 4 ) = T ε ( N 2 2 σ + R 0 N 10 13 σ 12 ) ,
which implies
R 0 T ε N 2 2 σ 1 N 10 13 σ 12 T ε N 2 2 σ f o r 10 13 < σ 1 .
Then we have
R 1 j R 0 ( 1 + T α T 0 ) T ε ( N 2 2 σ + T α N 6 α ( 1 σ ) 11 σ + 5 3 α ) T ε ( Y 2 2 σ + T α Y 6 α ( 1 σ ) 11 σ + 5 6 α ) .
Consequently, recalling (35) we have
N π ( σ , T , T + T α ) j = 1 2 ( R 1 j + R 2 j ) T ε ( Y 2 2 σ + T α Y 6 α ( 1 σ ) 11 σ + 5 6 α + T θ Y l ( 1 2 σ ) ) .
We choose Y 2 2 σ = T α Y 6 α ( 1 σ ) 11 σ + 5 6 α which is equivalent to Y = T 6 α 2 6 α ( 1 σ ) + 11 σ 5 . Thus, (44) becomes
N π ( σ , T , T + T α ) T ε ( Y 2 2 σ + T θ Y l ( 1 2 σ ) ) = T ε ( T 12 α 2 ( 1 σ ) 6 α ( 1 σ ) + 11 σ 5 + T θ + 6 α 2 l ( 1 2 σ ) 6 α ( 1 σ ) + 11 σ 5 .
Comparing the two terms in (45) we can get
N π ( σ , T , T + T α ) T 12 α 2 ( 1 σ ) 6 α ( 1 σ ) + 11 σ 5 + ε ,
for σ ( 6 θ α 12 α 2 11 θ + 12 α 2 l ) 6 θ α 12 α 2 5 θ + 6 α 2 l , from which we complete the proof of the second result of Theorem 3.

Author Contributions

Conceptualization, W.D. and H.L.; Methodology, D.Z.; Software, W.D.; Validation, W.D., H.L., and D.Z.; Formal Analysis, W.D.; Investigation, W.D.; Resources, H.L.; Data Curation, D.Z.; Writing—Original Draft Preparation, W.D.; Writing—Review and Editing, H.L.; Visualization, D.Z.; Supervision, D.Z.; Project Administration, D.Z.; Funding Acquisition, H.L. and D.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Natural Science Foundation of China (Grant Nos. 11771256 and 11801327.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Huang, J.; Zhai, W.G.; Zhang, D.Y. Ω-result for the index of composition of an integral ideal. AIMS Math. 2021, 6, 4979–4988. [Google Scholar] [CrossRef]
  2. Sui, Y.K.; Zhai, W.G.; Zhang, D.Y. Omega-Result for the index of composition of an integer. Int. J. Number Theory 2018, 14, 339–348. [Google Scholar] [CrossRef]
  3. Zhang, D.Y.; Zhai, W.G. On the mean value of the index of composition of an integral ideal (II). J. Number Theory 2013, 133, 1086–1110. [Google Scholar] [CrossRef]
  4. Zhang, D.Y.; Lü, M.M.; Zhai, W.G. On the mean value of the index of composition of an integer (II). Int. J. Number Theory 2013, 9, 431–445. [Google Scholar] [CrossRef]
  5. Huang, J.; Liu, H.F. Divisor problems related to Hecke eigenvalues in three dimensions. J. Math. 2021, 2021, 9928233. [Google Scholar] [CrossRef]
  6. Huang, J.; Liu, H.F.; Xu, F.X. Two-Dimension Divisor Problems Related to Symmetric L-function. Symmetry 2021, 13, 359. [Google Scholar] [CrossRef]
  7. Liu, H.F.; Zhang, R. Some problems involving Hecke eigenvalues. Acta Math. Hung. 2019, 159, 287–298. [Google Scholar] [CrossRef]
  8. Lü, G.S. On general divisor problems involving Hecke eigenvalues. Acta Math. Hung. 2012, 135, 148–159. [Google Scholar] [CrossRef]
  9. Good, A. The square mean of Dirichlet series associated with cusp forms. Mathematika 1982, 29, 278–295. [Google Scholar] [CrossRef]
  10. Jiang, Y.J.; Lü, G.S.; Yan, X.F. Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for SL(m,Z). Math. Proc. Camb. Philos. Soc. 2016, 161, 339–356. [Google Scholar] [CrossRef]
  11. Lao, H.X. Mean value of Dirichlet series coefficients of Rankin-Selberg L-functions. Lith. Math. J. 2017, 57, 351–358. [Google Scholar] [CrossRef]
  12. Zhang, D.Y.; Lau, Y.K.; Wang, Y.N. Remark on the paper “On products of Fourier coefficients of cusp forms”. Arch. Math. 2017, 108, 263–269. [Google Scholar] [CrossRef]
  13. Kowalski, E.; Michel, P. Zeros of families of Automorphic L-functions close to 1. Pac. J. Math. 2002, 207, 411–431. [Google Scholar] [CrossRef]
  14. Liu, J.Y.; Ye, Y.B. Superposition of zeros of distinct L-functions. Forum Math. 2009, 14, 419–455. [Google Scholar] [CrossRef] [Green Version]
  15. Rudnick, Z.; Sarnak, P. Zeros of principle L-functions and random matrix theory. Duke Math. J. 1996, 81, 269–322. [Google Scholar] [CrossRef] [Green Version]
  16. Sankaranarayanan, A.; Sengupta, J. Zero density estimate of L-functions attached to Maass forms. Acta Arith. 2007, 127, 273–284. [Google Scholar] [CrossRef]
  17. Xu, Z. A new zero density result of L-functions attached to Maass forms. Acta Math. Sin. 2011, 27, 1149–1162. [Google Scholar] [CrossRef]
  18. Zhang, D.Y. Zero density Estimates for automorphic L-functions. Acta Math. Sin. 2009, 25, 945–960. [Google Scholar] [CrossRef]
  19. Ingham, A.E. On the estimation of N(σ,T). Q. J. Math. Oxf. Ser. 1940, 11, 291–292. [Google Scholar] [CrossRef]
  20. Huxley, M.N. Large Values of Dirichlet Polynomials III. Acta Arith. 1975, 27, 434–444. [Google Scholar] [CrossRef]
  21. Jutila, M. Zero-density estimates for L-functions. Acta. Arith. 1997, 32, 55–62. [Google Scholar] [CrossRef] [Green Version]
  22. Bourgain, J. On large values estimates for Dirichlet polynomials and the density hypothesis for the Riemann zeta function. Int. Math. Res. Not. 2000, 3, 133–146. [Google Scholar] [CrossRef]
  23. Ivić, A. The Riemann Zeta Function: The Theory of the Riemann Zeta-Function with Applications; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
  24. Ye, Y.B.; Zhang, D.Y. Zero density for automorphic L-functions. J. Number Theory 2013, 133, 3877–3901. [Google Scholar] [CrossRef]
  25. Dong, L.L.; Liu, H.F.; Zhang, D.Y. Zero density estimates for automorphic L-functions of GLm. Acta Math. Hung. 2016, 148, 191–210. [Google Scholar] [CrossRef]
  26. Davenport, H. Multiplicatiive Number Theory, 2nd ed.; Springer: New York, NY, USA, 1980. [Google Scholar]
  27. Montgomery, H.L. Topics in Multiplicative Number Theory; Springer: Berlin, Germany, 1971. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ding, W.; Liu, H.; Zhang, D. New Zero-Density Results for Automorphic L-Functions of GL(n). Mathematics 2021, 9, 2061. https://doi.org/10.3390/math9172061

AMA Style

Ding W, Liu H, Zhang D. New Zero-Density Results for Automorphic L-Functions of GL(n). Mathematics. 2021; 9(17):2061. https://doi.org/10.3390/math9172061

Chicago/Turabian Style

Ding, Wenjing, Huafeng Liu, and Deyu Zhang. 2021. "New Zero-Density Results for Automorphic L-Functions of GL(n)" Mathematics 9, no. 17: 2061. https://doi.org/10.3390/math9172061

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop