Prediction of Mechanical Properties of the Stirrup-Confined Rectangular CFST Stub Columns Using FEM and Machine Learning
Abstract
:1. Introduction
2. Experimental Data Set
3. FEM Model
3.1. FEM Model
3.2. Parameter Setting of Finite Element Analysis
4. Property Prediction Based on Gradient Boosting Regression
4.1. The Model Selection
Algorithm 1 Gradient Boost |
|
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, L.H.; Li, W.; Bjorhovde, R.J. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar] [CrossRef]
- Ding, F.-X.; Wang, W.; Liu, X.-M.; Wang, L.; Yi, S. Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns. Steel Compos. Struct. 2021, 38, 305–317. [Google Scholar] [CrossRef]
- Ding, F.X.; Lu, D.R.; Bai, Y.; Zhou, Q.S.; Ni, M.; Yu, Z.W.; Jiang, G.S. Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading. Thin-Walled Struct. 2016, 98, 443–453. [Google Scholar] [CrossRef]
- Lu, D.R.; Wang, W.J.; Ding, F.; Liu, X.M.; Fang, C.J.J.S. The impact of stirrups on the composite action of concrete-filled steel tubular stub columns under axial loading. Structures 2021, 30, 786–802. [Google Scholar] [CrossRef]
- Samarakkody, D.I.; Thambiratnam, D.P.; Chan, T.; Moragaspitiya, P.J.C.; Materials, B. Differential axial shortening and its effects in high rise buildings with composite concrete filled tube columns. Constr. Build. Mater. 2017, 143, 659–672. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Prayogo, D.; Wu, Y.W.J. Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture. J. Comput. Civ. Eng. 2013, 28, 06014003. [Google Scholar] [CrossRef] [Green Version]
- Bui, D.T.; Nhu, V.H.; Hoang, N.D. Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network. Adv. Eng. Inform. 2018, 38, 593–604. [Google Scholar]
- Hoang, N.D.; Bui, D.T. Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: A multi-dataset study. Bull. Eng. Geol. Environ. 2018, 77, 191–204. [Google Scholar] [CrossRef]
- Moosazadeh, S.; Namazi, E.; Aghababaei, H.; Marto, A.; Mohamad, H.; Hajihassani, M. Prediction of building damage induced by tunnelling through an optimized artificial neural network. Eng. Comput. 2019, 35, 579–591. [Google Scholar] [CrossRef]
- Sharma, L.K.; Singh, T.N. Regression-based models for the prediction of unconfined compressive strength of artificially structured soil. Eng. Comput. 2017. [Google Scholar] [CrossRef]
- Rafiei, M.H.; Khushefati, W.H.; Demirboga, R.; Adeli, H.J.A.M.J. Supervised Deep Restricted Boltzmann Machine for Estimation of Concrete. Aci. Mater. J. 2017, 114, 237–244. [Google Scholar] [CrossRef]
- Sarveghadi, M.; Gandomi, A.H.; Bolandi, H.; Alavi, A.H. Development of prediction models for shear strength of SFRCB using a machine learning approach. Neural Comput. Appl. 2015, 1–10. [Google Scholar] [CrossRef]
- Nilsen, V.; Pham, L.T.; Hibbard, M.; Klager, A.; Cramer, S.M.; Morgan, D.J.C.; Materials, B. Prediction of concrete coefficient of thermal expansion and other properties using machine learning. Constr. Build. Mater. 2019, 220, 587–595. [Google Scholar] [CrossRef]
- Prayogo, D.; Cheng, M.-Y.; Wu, Y.-W.; Tran, D.-H. Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams. Eng. Comput. 2020, 36, 1135–1153. [Google Scholar] [CrossRef]
- Ding, F.-X.; Luo, L.; Zhu, J.; Wang, L.; Yu, Z.-W. Mechanical behavior of stirrup-confined rectangular CFT stub columns under axial compression. Thin-Walled Struct. 2018, 124, 136–150. [Google Scholar] [CrossRef]
- Chen, Z.H.; Du, Y.S.; Wu, L.; Qin, Y.; Zhou, T. Summary of research on concrete filled rectangular steel tube structure. Build. Struct. 2015. (In Chinese) [Google Scholar] [CrossRef]
- Rao, Y.L.; Zhang, J.C.; Li, Y.; Huang, Y.B.; Li, D. Test of bearing capacity of concrete filled rectangular steel tubular stub columns under axial compression. J. Huaqiao Univ. (Nat. Sci.) 2019, 40, 338–343. (In Chinese) [Google Scholar]
- Qu, X.S.; Liu, Q. Study on the axial compression behavior of concrete-filled rectangular steel tubular columns. Build. Sci. 2018, 34, 37–42. (In Chinese) [Google Scholar]
- Jing, S.Y.; Zheng, X.Q.; Zhu, J.S. Research on the mechanical behavior of the square thick-walled concrete-filled steel tube short column. Ind. Constr. 1989, 11, 8–13. (In Chinese) [Google Scholar]
- Hu, H.T.; Huang, C.S.; Wu, M.H.; Wu, Y.M. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J. Struct. Eng. 2003, 129, 1322–1329. [Google Scholar] [CrossRef]
- Baltay, P.; Gjelsvik, A.J. Coefficient of Friction for Steel on Concrete at High Normal Stress. J. Mater. Civ. Eng. 1990, 2, 46–49. [Google Scholar] [CrossRef]
- Yu, Z.-W.; Ding, F.X.; Cai, C.S. Experimental behavior of circular concrete-filled steel tube stub columns. J. Constr. Steel Res. 2007, 63, 165–174. [Google Scholar] [CrossRef]
- Ottosen, N.S.; Ristinmaa, M. Common Plasticity Models. Mech. Const. Model. 2005, 279–319. [Google Scholar] [CrossRef]
- Ding, F.; Ying, X.; Zhou, L.; Yu, Z.; China, C.E. Unified calculation method and its application in determining the uniaxial mechanical properties of concrete. Front. Archit. Civ. Eng. China 2011, 5, 381–393. [Google Scholar] [CrossRef]
- Harper, Angel, Inc. ABAQUS User’s Manuals; Version 6.9; Simulia, Providence: Johnston, RI, USA, 2009. [Google Scholar]
- Ding, F.; Zhu, J.; Cheng, S.; Liu, X. Comparative study of stirrup-confined circular concrete-filled steel tubular stub columns under axial loading. Thin-Walled Struct. 2018, 123, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Kriegler, B.; Berk, R. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2010, 38, 367–378. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–374. [Google Scholar] [CrossRef]
- Freund, Y.J. Experiments with a new boosting algorithm. icml Citeseer 1996, 148–156. Available online: https://www.researchgate.ne-t/Publication/244498683_Experiment_With_a_New_Boosting_Algorithm (accessed on 10 June 2021).
- Björck, Å. Numerical Methods for Least Squares Problems. SIAM 1996. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Q.; Yan, P.; Yin, J.; Lou, P. A Study on Axial Compression Performance of Concrete-Filled Steel-Tubular Shear Wall with a Multi-Cavity T-Shaped Cross-Section. Energies 2020, 13, 4831. [Google Scholar] [CrossRef]
Aspect Ratio | B/D = 1 | B/D = 1.5 | B/D = 2 | B/D = 3 |
---|---|---|---|---|
RST | | | | |
SST | | | | |
Variables | Unit | Min | Max | Mean |
---|---|---|---|---|
X1 = section length (B) | mm | 121 | 601 | 266.3 |
X2 = section width (D) | mm | 100 | 300 | 188.1 |
X3 = steel tube thickness (t) | mm | 2 | 7.36 | 4.57 |
X4 = equivalent stirrup ratio(ρsa) | % | 0 | 1.1 | 0.2 |
X5 = concrete compressive strength (fcu) | MPa | 23.8 | 70.8 | 40.3 |
X6 = yield strength of steel tube(fs) | MPa | 235 | 750 | 360.9 |
Y = ultimate bearing capacity of CFST columns (N) | KN | 1000 | 8456 | 3477.8 |
No | B × D × t/mm | B/D | ρsa | fcu/MPa | fs/MPa | Nu,fe/kN |
---|---|---|---|---|---|---|
1 | 500 × 500 × 5 | 1 | 0 | 60 | 345 | 16,241.7 |
2 | 500 × 500 × 5 | 1 | 0.005 | 40 | 235 | 12,006.1 |
3 | 750 × 500 × 6 | 1.5 | 0 | 60 | 420 | 25,516.3 |
4 | 750 × 500 × 6 | 1.5 | 0.015 | 60 | 235 | 26,049.7 |
5 | 1000 × 500 × 7 | 2 | 0 | 80 | 345 | 41,876 |
6 | 1000 × 500 × 7 | 2 | 0.01 | 40 | 345 | 28,674.6 |
7 | 1500 × 500 × 7.5 | 3 | 0 | 100 | 345 | 76,863.2 |
8 | 1500 × 500 × 7.5 | 3 | 0.007 | 40 | 235 | 35,168.5 |
9 | 500 × 250 × 4 | 2 | 0 | 38 | 323 | 6367.6 |
10 | 500 × 250 × 4 | 2 | 0.006 | 43 | 314 | 7637.58 |
11 | 375 × 250 × 3 | 1.5 | 0 | 48 | 354 | 5853.86 |
12 | 375 × 250 × 3 | 1.5 | 0.004 | 58 | 374 | 7268.44 |
13 | 400 × 200 × 4 | 2 | 0 | 63 | 382 | 6607.28 |
14 | 400 × 200 × 4 | 2 | 0.005 | 53 | 356 | 6220.35 |
Seed#1 | Seed#2 | Seed#3 | Seed#4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4443 | 4721 | 0.063 | 5765 | 6425 | 0.103 | 3513 | 3513 | 0.104 | 3250 | 2852 | 0.122 |
2516 | 2651 | 0.053 | 9910 | 9041 | 0.096 | 3450 | 4027 | 0.167 | 6572 | 6190 | 0.058 |
3750 | 3944 | 0.051 | 2708 | 2345 | 0.064 | 2910 | 2284 | 0.215 | |||
3470 | 4045 | 0.166 | 9103 | 8236 | 0.105 | 2318 | 2193 | 0.054 | |||
2920 | 2687 | 0.080 | 1917 | 2236 | 0.166 | ||||||
11,085 | 11,673 | 0.053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, D.; Chen, Z.; Ding, F.; Chen, Z.; Sun, P. Prediction of Mechanical Properties of the Stirrup-Confined Rectangular CFST Stub Columns Using FEM and Machine Learning. Mathematics 2021, 9, 1643. https://doi.org/10.3390/math9141643
Lu D, Chen Z, Ding F, Chen Z, Sun P. Prediction of Mechanical Properties of the Stirrup-Confined Rectangular CFST Stub Columns Using FEM and Machine Learning. Mathematics. 2021; 9(14):1643. https://doi.org/10.3390/math9141643
Chicago/Turabian StyleLu, Deren, Zhidong Chen, Faxing Ding, Zhenming Chen, and Peng Sun. 2021. "Prediction of Mechanical Properties of the Stirrup-Confined Rectangular CFST Stub Columns Using FEM and Machine Learning" Mathematics 9, no. 14: 1643. https://doi.org/10.3390/math9141643
APA StyleLu, D., Chen, Z., Ding, F., Chen, Z., & Sun, P. (2021). Prediction of Mechanical Properties of the Stirrup-Confined Rectangular CFST Stub Columns Using FEM and Machine Learning. Mathematics, 9(14), 1643. https://doi.org/10.3390/math9141643