Gottlieb Polynomials and Their q-Extensions
Abstract
:1. Introduction and Preliminaries
2. q-Extension of the Gottlieb Polynomials in Several Variables
3. Main Results
4. Particular Cases
5. Return to the q-Gottlieb Polynomials
6. Concluding Remarks and a Future Research Plan
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gottlieb, M.J. Concerning some polynomials orthogonal on a finite or enumerable set of points. Am. J. Math. 1938, 60, 453–458. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited, Chichester): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- McBride, E.B. Obtaining Generating Functions; Springer Tracts in Naturel Philosophy; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1971; Volume 21. [Google Scholar]
- Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Khan, M.A.; Akhlaq, M. Some new generating functions for Gottlieb polynomials of several variables. Internat. Trans. Appl. Sci. 2009, 1, 567–570. [Google Scholar]
- Choi, J. A generalization of Gottlieb polynomials in several variables. Appl. Math. Lett. 2012, 25, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Erkus-Duman, E. Some new properties of univariate and multivariate Gottlieb polynomials. Miskolc Math. Notes 2018, 19, 835–845. [Google Scholar] [CrossRef]
- Erkus-Duman, E.; Ozmen, N. On the Gottlieb polynomials in several variables. Facta Univ. Ser. Math. Inform. 2019, 34, 927–940. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Encyclopedia of Mathematics and its Applications 35; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Thomae, J. Beiträge zur theorie der durch die Heinesche Reihe. J. Reine Angew. Math. 1869, 70, 258–281. [Google Scholar] [CrossRef]
- Kac, V.G.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Erkus-Duman, E. A q-Extension of the Erkus-Srivastava polynomials in several variables. Taiwan. J. Math. 2008, 12, 539–543. [Google Scholar] [CrossRef]
- Khan, M.A.; Asif, M. A note on generating functions of q-Gottlieb polynomials. Commun. Korean Math. Soc. 2012, 27, 159–166. [Google Scholar] [CrossRef]
- Choi, J. q-Extension of a generalization of Gottlieb polynomials in two variables. J. Chungcheong Math. Soc. 2012, 25, 253–265. [Google Scholar] [CrossRef]
- Choi, J. q-Extension of a generalization of Gottlieb polynomials in three variables. Honam Math. J. 2012, 34, 327–340. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. q-Extension of a multivariable and multiparameter generalization of the Gottlieb polynomials in several variables. Tokyo J. Math. 2014, 37, 111–125. [Google Scholar] [CrossRef]
- Korkmaz-Duzgun, D.; Erkus-Duman, E. The Laguerre type d-orthogonal polynomials. J. Sci. Arts 2018, 42, 95–106. [Google Scholar]
- Choi, J. Notes on formal manipulations of double series. Commun. Korean Math. Soc. 2003, 18, 781–789. [Google Scholar] [CrossRef]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- De Sole, A.; Kac, V.G. On integral representations of q-gamma and q-beta functions. Rend. Mat. Acc. Lincei 2005, 16, 11–29. Available online: http://www.bdim.eu/item?id=RLIN_2005_9_16_1_11_0 (accessed on 15 March 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ErkuŞ-Duman, E.; Choi, J. Gottlieb Polynomials and Their q-Extensions. Mathematics 2021, 9, 1499. https://doi.org/10.3390/math9131499
ErkuŞ-Duman E, Choi J. Gottlieb Polynomials and Their q-Extensions. Mathematics. 2021; 9(13):1499. https://doi.org/10.3390/math9131499
Chicago/Turabian StyleErkuŞ-Duman, Esra, and Junesang Choi. 2021. "Gottlieb Polynomials and Their q-Extensions" Mathematics 9, no. 13: 1499. https://doi.org/10.3390/math9131499
APA StyleErkuŞ-Duman, E., & Choi, J. (2021). Gottlieb Polynomials and Their q-Extensions. Mathematics, 9(13), 1499. https://doi.org/10.3390/math9131499