Next Article in Journal
Formulas and Properties, Their Links and Characteristics
Next Article in Special Issue
Some Properties of Euler’s Function and of the Function τ and Their Generalizations in Algebraic Number Fields
Previous Article in Journal
A Methodology for Redesigning Networks by Using Markov Random Fields
Previous Article in Special Issue
On Fibonacci Numbers of Order r Which Are Expressible as Sum of Consecutive Factorial Numbers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Global and Local Behavior of the System of Piecewise Linear Difference Equations xn+1 = |xn| − ynb and yn+1 = xn − |yn| + 1 Where b ≥ 4

by
Busakorn Aiewcharoen
1,
Ratinan Boonklurb
2,* and
Nanthiya Konglawan
2
1
The Demonstration School of Silpakorn University, Faculty of Education, Silpakorn University, Nakhon Pathom 73000, Thailand
2
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
*
Author to whom correspondence should be addressed.
Mathematics 2021, 9(12), 1390; https://doi.org/10.3390/math9121390
Submission received: 14 May 2021 / Revised: 2 June 2021 / Accepted: 11 June 2021 / Published: 15 June 2021

Abstract

:
The aim of this article is to study the system of piecewise linear difference equations x n + 1 = | x n | y n b and y n + 1 = x n | y n | + 1 where n 0 . A global behavior for b = 4 shows that all solutions become the equilibrium point. For a large value of | x 0 | and | y 0 | , we can prove that (i) if b = 5 , then the solution becomes the equilibrium point and (ii) if b 6 , then the solution becomes the periodic solution of prime period 5.

1. Introduction

The first order system of the piecewise difference equation of the form
x n + 1 = | x n | a y n b and y n + 1 = x n c | y n | + d
for n 0 with a given initial condition ( x 0 , y 0 ) has been considered by several researchers. System (1) is actually motivated by the Lozi map [1,2] which is the system given by x n + 1 = a | x n | + y n + 1 and y n + 1 = b x n , where a , b R and a system x n + 1 = | x n | y n + 1 and y n + 1 = x n given in [3,4] or, equivalently, the Devaney’s Gingerbread man map x n + 1 = | x n | x n 1 + 1 studied in [5]. It is known that if the sequences ( x n ) n = 0 and ( y n ) n = 0 satisfy (1) and the given initial conditions for all n 0 , then ( x n , y n ) n = 0 is called a solution of (1). Let ( x n , y n ) n = 0 be the solutions of (1) with a given initial condition ( x 0 , y 0 ) . If there exist real numbers x ¯ and y ¯ and an integer N such that ( x n , y n ) = ( x ¯ , y ¯ ) for all n N , then we say that the solution ( x n , y n ) n = 0 eventually becomes the equilibrium point ( x ¯ , y ¯ ) of (1). On the other hand, if p is the smallest positive integer such that ( x n + p , y n + p ) = ( x n , y n ) for all n N , then we say that the solution ( x n , y n ) n = 0 eventually becomes the solution of prime period p of (1). For more details about the system of difference equations and their solutions, one may see [6,7]. Actually, to establish the stability of the system of difference equations involves derivatives of a function. However, the system (1) contains absolute value which is not differentiable. Thus, to study the behavior of the solution of (1), one needs to consider several regions of initial conditions and gather the information to obtain the results.
In 2010, Tikjha et al. [8] considered (1) when a = b = c = 1 and d = 0 . They proved that, for a given initial condition ( x 0 , y 0 ) R 2 , the solution of (1) either eventually becomes the solution of prime period 5 or the equilibrium point of (1). For a = b = 1 , c = 1 and d = 0 , Grove et al. [9] showed that for a given initial condition ( x 0 , y 0 ) R 2 , the solution of (1) is either (from the beginning) the equilibrium point or eventually becomes the solution of prime period 3 of (1). In the doctoral dissertation written by Lapierre [10], he studied some properties of solutions for 81 possible forms of (1) where a , b , c , d { 1 , 0 , 1 } . Kongtan and Tikjha [11] let a = c = d = 1 and b = 2 , x 0 = 0 and y 0 1 2 , and proved that the solution of (1) eventually becomes the solution of prime period 4 of (1). With a = 1 , c = 1 , d = 0 and b ( 0 , ) , Tikjha et al. [12] showed that the solution of (1) either eventually becomes the solution of prime period 3 or the equilibrium point of (1) for all initial conditions ( x 0 , y 0 ) R 2 . In 2017, Tikjha et al. [13] considered the case that a = c = 1 , b and d in ( , 0 ) and proved that the solution of (1) eventually becomes the equilibrium point of (1) for all initial conditions ( x 0 , y 0 ) R 2 within 6 iterations. In the same year, Tikjha [14] wrote a manuscript in Thai where, if a = c = d = 1 , b = 2 , x 0 = 0 and y 0 0 , 1 2 , then the solution of (1) eventually becomes the solution of prime period 4 of (1). Recently, Tikjha and Piasu [15] considered a = c = d = 1 and b = 3 with initial condition ( x 0 , y 0 ) being in a specific region in the first quadrant and showed that the solution of (1) either eventually becomes the equilibrium point or the solution of prime period 4. Tikjha and Lapaierre [16] also studied (1) with a = b = 1 and c = d = 1 and the initial condition ( x 0 , y 0 ) is an element in the closed second or fourth quadrant. They proved that the solution of (1) either eventually becomes the solution of prime period 3 or 4. In addition, Tikjha et al. [17] proved that, if a = c = d = 1 , b { 2 , 3 } and y 0 = 0 , then under some conditions on x 0 the solution of (1) eventually becomes the solution of prime period 4.
In this paper, we let a = c = d = 1 and b 4 . That is, we consider the system
x n + 1 = | x n | y n b and y n + 1 = x n | y n | + 1 .
Let us first establish the lemma about the equilibrium of (2).
Lemma 1.
Let b 3 .
(i)
The equilibrium point of (2) is ( 1 , b + 2 ) .
(ii)
Let ( x n , y n ) n = 0 be the solution of (2). Assume that there exists a positive integer N such that y N = x N b + 1 0 and x N 0 . Then, ( x n , y n ) = ( 1 , b + 2 ) for all n > N .
Proof. 
(i) By considering four cases of | x | and | y | , we can solve the system of equations x = | x | y b and y = x | y | + 1 and the only case that gives the solution is when x and y are negative, which is ( x , y ) = ( 1 , b + 2 ) .
(ii) Assume that there exists a positive integer N such that y N = x N b + 1 0 and x N 0 . Then,
x N + 1 = | x N | y N b = x N ( x N b + 1 ) b = 1 y N + 1 = x N | y N | + 1 = x N + ( x N b + 1 ) + 1 = b + 2 .
Since b 4 , b + 2 < 0 . Thus,
x N + 2 = | x N + 1 | y N + 1 b = 1 ( b + 2 ) b = 1 y N + 2 = x N + 1 | y N + 1 | + 1 = 1 + ( b + 2 ) + 1 = b + 2 .
Therefore, by mathematical induction, we have ( x n , y n ) = ( 1 , b + 2 ) for all n > N . □
In Section 2 of this article, a global behavior for the case b = 4 is proved. We can conclude that all solutions eventually become the equilibrium point ( 1 , 2 ) . Local behavior for b 5 with large values of | x 0 | and | y 0 | is studied in Section 3. It is revealed that, locally, all solutions of Equation (2) for b = 5 eventually become the equilibrium point. It can be seen that for b 6 , some solutions have a chance to becomes periodic. Finally, a conclusion and discussion about our work and our conjecture are provided in the last section.

2. Global Behavior for b = 4

In this section, we investigate the global behavior where b = 4 . The first four lemmas deal with the case when x 0 = 0 or y 0 = 0 .
Lemma 2.
If x 0 0 and y 0 = 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2).
Proof. 
Let x 0 0 and y 0 = 0 .
Case 1  x 0 0 , 1 8 . We have
x 1 = | x 0 | y 0 4 = x 0 4 < 0 , y 1 = x 0 | y 0 | + 1 = x 0 + 1 0 x 2 = | x 1 | y 1 4 = 2 x 0 1 < 0 , y 2 = x 1 | y 1 | + 1 = 4 x 3 = | x 2 | y 2 4 = 2 x 0 + 1 > 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 4 < 0 x 4 = | x 3 | y 3 4 = 4 x 0 + 1 > 0 , y 4 = x 3 | y 3 | + 1 = 2 x 5 = | x 4 | y 4 4 = 4 x 0 1 < 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 0 x 6 = | x 5 | y 5 4 = 8 x 0 3 < 0 , y 6 = x 5 | y 5 | + 1 = 0 x 7 = | x 6 | y 6 4 = 8 x 0 1 < 0 , y 7 = x 6 | y 6 | + 1 = 8 x 0 2 = x 7 4 + 1 < 0 .
By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 .
Case 2  x 0 1 8 , 3 16 . We have the same ( x 1 , y 1 ) ( x 7 , y 7 ) as in Case 1, while, x 7 0 and
x 8 = | x 7 | y 7 4 = 16 x 0 3 < 0 , y 8 = x 7 | y 7 | + 1 = 2 x 9 = | x 8 | y 8 4 = 16 x 0 + 1 < 0 , y 9 = x 8 | y 8 | + 1 = 16 x 0 4 = x 9 4 + 1 < 0 .
By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 .
Case 3  x 0 3 16 , 1 4 . We have the same ( x 1 , y 1 ) ( x 8 , y 8 ) as in Case 2, while
x 9 = | x 8 | y 8 4 = 16 x 0 5 < 0 , y 9 = x 8 | y 8 | + 1 = 16 x 0 4 < 0 x 10 = | x 9 | y 9 4 = 32 x 0 + 5 < 0 , y 10 = x 9 | y 9 | + 1 = 32 x 0 8 = x 10 4 + 1 < 0 .
By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 .
Case 4  x 0 1 4 , 1 . Then, x 5 0 . We have the same ( x 1 , y 1 ) ( x 5 , y 5 ) as in Case 1, while
x 6 = | x 5 | y 5 4 = 5 , y 6 = x 5 | y 5 | + 1 = 0 .
Direct computation gives x 10 = | x 9 | y 9 4 = 3 < 0 and y 10 = x 9 | y 9 | + 1 = x 10 4 + 1 = 0 . By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 .
Case 5  x 0 ( 1 , 4 ) . We have
x 1 = | x 0 | y 0 4 = x 0 4 < 0 , y 1 = x 0 | y 0 | + 1 = x 0 + 1 > 0 x 2 = | x 1 | y 1 4 = 2 x 0 1 < 0 , y 2 = x 1 | y 1 | + 1 = 4 x 3 = | x 2 | y 2 4 = 2 x 0 + 1 > 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 4 < 0 x 4 = | x 3 | y 3 4 = 4 x 0 + 1 > 0 , y 4 = x 3 | y 3 | + 1 = 2 x 5 = | x 4 | y 4 4 = 4 x 0 1 > 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 > 0 x 6 = | x 5 | y 5 4 = 5 , y 6 = x 5 | y 5 | + 1 = 0 .
Similar to Case 4, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 11 .
Case 6  x 0 [ 4 , ) . Then, x 1 0 . We have the same ( x 1 , y 1 ) as in Case 5, while x 2 = | x 1 | y 1 4 = 9 and y 2 = x 1 | y 1 | + 1 = 4 . By direct computation, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 11 . □
Lemma 3.
If x 0 = 0 and y 0 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2).
Proof. 
By separate cases as in Lemma 2, we can conclude the behavior of the solution in Table 1.
Lemma 4.
If x 0 = 0 and y 0 < 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2).
Proof. 
By separate cases as in Lemma 2, we can conclude the behavior of the solution in Table 2.
Lemma 5.
If x 0 < 0 and y 0 = 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2).
Proof. 
By separate cases as in Lemma 2, we can conclude the behavior of the solution in Table 3.
The next four lemmas consider ( x 0 , y 0 ) in each quadrant. The only complicated cases are the second and the forth quadrants. For the first and the third quadrants we just show the regions considered without the detail of the proof.
Lemma 6.
If b = 4 , x 0 > 0 and y 0 > 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2).
Proof. 
If ( x , y ) A R + × R + , then ( x n , y n ) = ( 1 , 2 ) for all n N , where:
  • A = { ( x , y ) | x y + 1 > 0 and 2 x + 2 y 1 0 } ; { ( x , y ) | 2 x + 2 y 1 < 0 and 4 x 4 y + 1 < 0 } and N = 6 .
  • A = { ( x , y ) R + × R + | 4 x 4 y + 1 0 and 4 x 4 y < 0 } ; { ( x , y ) | 8 x + 8 y 9 < 0 and x y + 1 < 0 } and N = 7 .
  • A = { ( x , y ) | 4 x 4 y 0 and 8 x 8 y 1 < 0 } and N = 8 .
  • A = { ( x , y ) | 16 x + 16 y 19 < 0 and 8 x + 8 y 9 0 } and N = 9 .
  • A = { ( x , y ) | 8 x 8 y 1 0 and 16 x 16 y 3 < 0 } ; { ( x , y ) | 4 x + 4 y 5 < 0 and 16 x + 16 y 19 0 } ; { ( x , y ) | 4 x + 4 y 5 0 } and N = 10 .
  • A = { ( x , y ) | x y 4 0 } ; { ( x , y ) | 16 x 16 y 3 0 and 4 x 4 y 1 < 0 } ; { ( x , y ) | 4 x 4 y 1 0 and x y 4 < 0 } and N = 11 .
Lemma 7.
If b = 4 , x 0 < 0 and y 0 < 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2).
Proof. 
If ( x , y ) A R × R , then ( x n , y n ) = ( 1 , 2 ) for all n N , where:
  • A = { ( 1 , 2 ) } and N = 0 .
  • A = { ( x , y ) | x y 4 < 0 and x + y + 1 < 0 } \ { ( 1 , 2 ) } and N = 2 .
  • A = { ( x , y ) | 2 x 2 y 9 < 0 and x y 4 0 } ; { ( x , y ) | x + y + 1 0 and 2 x + 2 y + 1 < 0 } and N = 4 .
  • A = { ( x , y ) | 2 x 2 y 10 < 0 and 2 x 2 y 9 0 } and N = 5 .
  • A = { ( x , y ) | 4 x 4 y 21 < 0 and 2 x 2 y 10 0 } ; { ( x , y ) | 2 x + 2 y + 1 0 and 4 x + 4 y + 1 < 0 } and N = 6 .
  • A = { ( x , y ) | 4 x + 4 y + 1 0 } and N = 7 .
  • A = { ( x , y ) | 8 x 8 y 43 < 0 and 4 x 4 y 21 0 } and N = 8 .
  • A = { ( x , y ) | 2 x 2 y 11 0 } ; { ( x , y ) | 2 x 2 y 11 < 0 and 8 x 8 y 43 0 } and N = 9 .
Lemma 8.
If b = 4 , x 0 < 0 and y 0 > 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2).
Proof. 
Let x 0 < 0 and y 0 > 0 . Then,
x 1 = | x 0 | y 0 4 = x 0 y 0 4 , y 1 = x 0 | y 0 | + 1 = x 0 y 0 + 1 .
Case 1  ( x 0 , y 0 ) ( x , y ) | x y + 1 0 and y < 1 2 . We have x 1 < x 0 + y 0 1 0 and y 1 0 and
x 2 = | x 1 | y 1 4 = 2 y 0 1 < 0 , y 2 = x 1 | y 1 | + 1 = 2 x 0 4 < 2 ( x 0 y 0 + 1 ) 0 .
By using the result of Lemma 7, we obtain that
  • if ( x 0 , y 0 ) ( x , y ) | 4 x 4 y + 1 0 , then
    x 6 = | x 5 | y 5 4 = 8 x 0 + 8 y 0 3 < 2 ( 4 x 0 4 y 0 + 1 ) 0 , y 6 = x 5 | y 5 | + 1 = 8 x 0 8 y 0 < 8 y 0 < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y + 1 0 and 4 x 4 y + 1 < 0 , then
    x 5 = | x 4 | y 4 4 = 4 x 0 + 4 y 0 3 < 2 ( 2 x 0 2 y 0 + 1 ) 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 4 y 0 < 0 and y 5 = x 5 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 ;
  • if ( x 0 , y 0 ) ( x , y ) | x y + 1 0 , 2 x 2 y + 1 < 0 and y < 1 2 , then
    x 3 = | x 2 | y 2 4 = 2 x 0 2 y 0 + 1 < 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 + 2 y 0 4 < 2 ( x 0 y 0 + 1 ) 0 and y 3 = x 3 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 4 .
Case 2  ( x 0 , y 0 ) ( x , y ) | x y + 1 0 , 2 x + 2 y 1 < 0 and y 1 2 . We have the same ( x 2 , y 2 ) as in Case 1, while
x 3 = | x 2 | y 2 4 = 2 x 0 + 2 y 0 1 < 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 + 2 y 0 4 < 2 ( x 0 y 0 + 1 ) 0 .
By using the result of Lemma 7, we obtain that
x 4 = | x 3 | y 3 4 = 4 y 0 + 1 < 2 y 0 + 1 0 , y 4 = x 3 | y 3 | + 1 = 4 y 0 4 < 4 ( x 0 y 0 + 1 ) 0 and y 4 = x 4 4 + 1 .
By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 5 .
Case 3  ( x 0 , y 0 ) { ( x , y ) | x y + 1 0 and 2 x + 2 y 1 0 } . We have the same ( x 2 , y 2 ) and ( x 3 , y 3 ) as in Case 2, while x 3 0 and
x 4 = | x 3 | y 3 4 = 4 x 0 1 < 0 , y 4 = x 3 | y 3 | + 1 = 4 y 0 4 0 .
By using the result of Lemma 7, we obtain that
x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 + 1 < 2 ( 2 x 0 + 2 y 0 1 ) 0 y 5 = x 4 | y 4 | + 1 = 4 x 0 + 4 y 0 4 < 4 x 0 + 4 y 0 4 0 and y 5 = x 5 4 + 1 .
By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 .
Case 4  ( x 0 , y 0 ) ( x , y ) | x y 4 < 0 and x y + 1 < 0 . We have x 1 < 0 and y 1 < 0 . By using the result of Lemma 7, we obtain that
  • if y 0 < 1 2 , then x 2 = | x 1 | y 1 4 = 2 y 0 1 < 0 , y 2 = x 1 | y 1 | + 1 = 2 y 0 2 < 0 and y 2 = x 2 4 + 1 . By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 3 ;
  • if 1 2 y 0 < 3 4 , then
    x 4 = | x 3 | y 3 4 = 4 y 0 + 1 < 2 ( 2 y 0 1 ) 0 , y 4 = x 3 | y 3 | + 1 = 4 y 0 4 < 4 y 0 3 < 0 and y 4 = x 4 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 5 ;
  • if 3 4 y 0 < 1 , then
    x 5 = | x 4 | y 4 4 = 8 y 0 + 5 < 2 ( 4 y 0 3 ) 0 , y 5 = x 4 | y 4 | + 1 = 8 y 0 8 < 0 and y 5 = x 5 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 ;
  • If 1 y 0 < 9 8 , then
    x 6 = | x 5 | y 5 4 = 8 y 0 9 < 0 , y 6 = x 5 | y 5 | + 1 = 8 y 0 + 6 < 8 ( y 0 1 ) 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • If 9 8 y 0 < 19 16 , then
    x 8 = | x 7 | y 7 4 = 16 y 0 + 17 < 2 ( 8 y 0 9 ) 0 , y 8 = x 7 | y 7 | + 1 = 16 y 0 20 < 16 y 0 19 < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • If 19 16 y 0 < 5 4 , then
    x 9 = | x 8 | y 8 4 = 32 y 0 + 37 < 2 ( 16 y 0 19 ) 0 , y 9 = x 8 | y 8 | + 1 = 32 y 0 40 < 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 ;
  • If y 0 5 4 , then
    x 5 = | x 4 | y 4 4 = 5 , y 5 = x 4 | y 4 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 10 .
Case 5  ( x 0 , y 0 ) ( x , y ) | x y 4 0 and x > 9 2 . We have x 1 > 0 and y 1 < ( x 0 y 0 4 ) 0 . Then,
x 2 = | x 1 | y 1 4 = 2 x 0 9 < 0 , y 2 = x 1 | y 1 | + 1 = 2 y 0 2 < 0 .
By using the result of Lemma 7, we obtain that
x 3 = | x 2 | y 2 4 = 2 x 0 + 2 y 0 + 7 < 2 x 0 + 2 y 0 + 8 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 2 y 0 10 < 2 x 0 9 < 0 and y 3 = x 3 4 + 1 .
By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 4 .
Case 6  ( x 0 , y 0 ) ( x , y ) | x y 4 0 , 2 x + 2 y 11 < 0 , 2 x 2 y 10 < 0 and 5 < x 9 2 . We have the same ( x 2 , y 2 ) as in Case 5, while x 2 0 and
x 3 = | x 2 | y 2 4 = 2 x 0 + 2 y 0 11 < 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 2 y 0 10 < 0 .
By using the result of Lemma 7, we obtain that
  • if 5 < x 0 9 2 , then
    x 4 = | x 3 | y 3 4 = 4 x 0 + 17 < 4 x 0 + 18 = 2 ( 2 x 0 + 9 ) 0 , y 4 = x 3 | y 3 | + 1 = 4 x 0 20 < 0 and y 4 = x 4 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 5 ;
  • if 41 8 < x 0 5 , then
    x 6 = | x 5 | y 5 4 = 8 x 0 41 < 0 , y 6 = x 5 | y 5 | + 1 = 8 x 0 + 38 < 8 x 0 + 40 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if 83 16 < x 0 41 8 , then
    x 8 = | x 7 | y 7 4 = 16 x 0 + 81 < 16 x 0 + 82 = 2 ( 8 x 0 + 41 ) 0 , y 8 = x 7 | y 7 | + 1 = 16 x 0 84 < 16 x 0 83 < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if x 0 83 16 , then
    x 9 = | x 8 | y 8 4 = 32 x 0 + 165 < 32 x 0 + 166 = 2 ( 16 x 0 + 83 ) 0 , y 9 = x 8 | y 8 | + 1 = 32 x 0 168 = 8 ( 2 x 0 + 2 y 0 11 ) + 8 ( 2 x 0 2 y 0 10 ) < 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 .
Case 7  ( x 0 , y 0 ) { ( x , y ) | 2 x + 2 y 11 < 0 , and 2 x 2 y 10 0 } . We have the same ( x 2 , y 2 ) and ( x 3 , y 3 ) as in Case 6, while y 3 0 and
x 4 = | x 3 | y 3 4 = 4 x 0 + 17 < 4 x 0 + 4 y 0 + 20 0 , y 4 = x 3 | y 3 | + 1 = 4 y 0 > 0 x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 21 < 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 4 y 0 + 18 < 4 x 0 + 4 y 0 + 18 = 2 ( 2 x 0 2 y 0 9 ) < 2 ( 2 x 0 2 y 0 10 ) 0 .
By using the result of Lemma 7, we obtain that
  • if y 0 < 1 8 , then
    x 6 = | x 5 | y 5 4 = 8 y 0 1 < 0 , y 6 = x 5 | y 5 | + 1 = 8 y 0 2 < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if 1 8 y 0 < 3 16 , then
    x 8 = | x 7 | y 7 4 = 16 y 0 + 1 < 16 y 0 + 2 = 2 ( 8 y 0 1 ) 0 , y 8 = x 7 | y 7 | + 1 = 16 y 0 4 < 16 y 0 3 < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if y 0 3 16 , then
    x 9 = | x 7 | y 7 4 = 32 y 0 + 5 < 32 y 0 + 6 0 , y 9 = x 7 | y 7 | + 1 = 32 y 0 8 = 2 y 8 < 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 .
Case 8  ( x 0 , y 0 ) { ( x , y ) | 2 x + 2 y 11 0 , and 2 x 2 y 10 0 } . We have the same ( x 2 , y 2 ) and ( x 3 , y 3 ) as in Case 6, while x 3 0 and y 3 0 . By using the results of Lemmas 2, 3 and 7, we obtain that
  • if y 0 1 8 , then
    x 8 = | x 7 | y 7 4 = 16 y 0 3 < 16 y 0 2 0 , y 8 = x 7 | y 7 | + 1 = 16 y 0 < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if 1 8 < y 0 < 3 16 , then
    x 8 = | x 7 | y 7 4 = 16 y 0 + 1 < 16 y 0 + 2 < 0 , y 8 = x 7 | y 7 | + 1 = 16 y 0 4 < 16 y 0 3 < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 .
  • if 3 16 y 0 < 4 16 , then
    x 9 = | x 8 | y 8 4 = 32 y 0 + 5 < 32 y 0 + 6 0 , y 9 = x 8 | y 8 | + 1 = 32 y 0 8 < 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 ;
  • if 4 16 y 0 < 9 32 , then
    x 10 = | x 9 | y 9 4 = 32 y 0 9 < 0 , y 10 = x 9 | y 9 | + 1 = 32 y 0 + 6 < 2 ( 16 y 0 4 ) 0 and y 10 = x 10 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if 9 32 y 0 < 19 64 , then
    x 12 = | x 11 | y 11 4 = 64 y 0 + 17 < 2 ( 32 y 0 9 ) 0 , y 12 = x 11 | y 11 | + 1 = 64 y 0 20 < 64 y 0 19 < 0 and y 12 = x 12 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 13 ;
  • if 19 64 y 0 < 5 16 , then
    x 13 = | x 12 | y 12 4 = 128 y 0 + 37 < 2 ( 64 y 0 19 ) 0 , y 13 = x 12 | y 12 | + 1 = 128 y 0 40 < 0 and y 13 = x 13 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 14 .
  • if 5 16 y 0 < 5 4 , then
    x 9 = | x 8 | y 8 4 = 5 , y 9 = x 8 | y 8 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 14 ;
  • if y 0 5 4 , then
    x 5 = | x 4 | y 4 4 = 9 , y 5 = x 4 | y 4 | + 1 = 4 .
    Similar to the proof of Case 6 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 14 .
Case 9  ( x 0 , y 0 ) { ( x , y ) | x y 4 0 , 2 x + 2 y 11 0 and x > 5 } . 1 y 0 = 5 y 0 4 > x 0 y 0 4 0 . Then, y 0 < 1 < 5 4 . We have the same ( x 2 , y 2 ) and ( x 3 , y 3 ) as in Case 6, while x 3 0 , y 3 < 0 and
x 4 = | x 3 | y 3 4 = 4 y 0 5 < 0 , y 4 = x 3 | y 3 | + 1 = 4 x 0 20 < 0 .
By using the result of Lemma 7, we obtain that
x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 + 21 < 4 x 0 4 y 0 + 22 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 + 4 y 0 24 < 4 y 0 24 < 4 24 < 0 and y 5 = x 5 4 + 1 .
By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 .
Case 10  ( x 0 , y 0 ) ( x , y ) | x y 4 0 , 2 x + 2 y 11 0 , 2 x 2 y 10 < 0 , x 5 and y 5 4 . We have the same ( x 2 , y 2 ) - ( x 4 , y 4 ) as in Case 9, while y 4 0 and
x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 + 21 < 4 x 0 4 y 0 + 22 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 + 4 y 0 + 16 = 4 ( x 0 y 0 4 ) 0 .
By using the result of Lemma 7, we obtain that
  • if 41 8 < x 0 5 , then
    x 6 = | x 5 | y 5 4 = 8 x 0 41 < 0 , y 6 = x 5 | y 5 | + 1 = 8 x 0 + 38 < 8 x 0 + 40 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if 83 16 < x 0 41 8 , then
    x 8 = | x 7 | y 7 4 = 16 x 0 + 81 < 16 x 0 + 82 = 2 ( 8 x 0 + 41 ) 0 , y 8 = x 7 | y 7 | + 1 = 16 x 0 84 < 16 x 0 83 < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if 84 16 < x 83 16 , then
    x 9 = | x 8 | y 8 4 = 32 x 0 + 165 < 32 x 0 + 166 0 , y 9 = x 8 | y 8 | + 1 = 32 x 0 168 = 2 ( 16 x 0 + 84 ) < 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 ;
  • if 85 16 x 0 < 339 64 , then
    x 13 = | x 12 | y 12 4 = 128 x 0 + 667 < 2 ( 64 x 0 + 339 ) < 0 , y 13 = x 12 | y 12 | + 1 = 128 x 0 680 0 and y 13 = x 13 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 14 ;
  • if 339 64 x 0 < 169 32 , then
    x 12 = | x 11 | y 11 4 = 64 x 0 + 337 < 2 ( 32 x 0 + 169 ) 0 , y 12 = x 11 | y 11 | + 1 = 64 x 0 340 < 0 and y 12 = x 12 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 13 ;
  • if 169 32 x 0 84 16 , then
    x 10 = | x 9 | y 9 4 = 32 x 0 169 0 , y 10 = x 9 | y 9 | + 1 = 32 x 0 + 166 < 2 ( 16 x 0 + 84 ) 0 and y 10 = x 10 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if x 0 85 16 , then
    x 9 = | x 8 | y 8 4 = 5 , y 9 = x 8 | y 8 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 14 .
Case 11  ( x 0 , y 0 ) ( x , y ) | x y 4 0 , 2 x 2 y 10 < 0 and y 5 4 . We have the same ( x 2 , y 2 ) - ( x 4 , y 4 ) as in Case 9. Since y 0 5 4 , x 4 0 and x 0 5 4 4 x 0 y 0 4 0 . Then, x 0 21 4 < 5 and y 4 = 4 ( x 0 + 5 ) > 0 . By using the result of Lemma 6, we obtain that
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 10 < 0 , 16 x 16 y 65 0 and y 5 4 , then
    x 9 = | x 8 | y 8 4 = 5 , y 9 = x 8 | y 8 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 14 ;
  • if ( x 0 , y 0 ) ( x , y ) | x y 4 0 , 16 x 16 y 65 < 0 and y 5 4 , then
    x 9 = | x 8 | y 8 4 = 32 x 0 + 32 y 0 + 124 < 32 x 0 + 32 y 0 + 128 0 , y 9 = x 8 | y 8 | + 1 = 0 .
    By using the result of Lemma 5, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 .
Figure 1 shows region of each case presented in the proof of this lemma.
Lemma 9.
If b = 4 , x 0 > 0 and y 0 < 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2).
Proof. 
Let x 0 > 0 and y 0 < 0 . Then,
x 1 = | x 0 | y 0 4 = x 0 y 0 4 , y 1 = x 0 | y 0 | + 1 = x 0 + y 0 + 1 .
Case 1  ( x 0 , y 0 ) { ( x , y ) | x y 4 < 0 and x + y + 1 0 } . We have x 1 < 0 and y 1 0 . By using the results of Lemmas 5 and 8, we have that
  • if ( x 0 , y 0 ) { ( x , y ) | x + y + 1 0 , 2 x + 2 y + 1 < 0 and y > 2 } , then
    x 3 = | x 2 | y 2 4 = 2 x 0 + 2 y 0 + 1 < 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 2 y 0 4 < 2 ( x 0 + y 0 + 1 ) 0 and y 3 = x 3 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 4 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 2 x + 2 y + 1 0 , 4 x + 4 y + 1 < 0 and y 2 } , then
    x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 3 < 2 ( 2 x 0 + 2 y 0 + 1 ) 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 + 4 y 0 < 4 x 0 + 4 y 0 + 1 < 0 and y 5 = x 5 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 4 x + 4 y + 1 0 , 4 x + 4 y < 0 and y 2 } , then
    x 6 = | x 5 | y 5 4 = 8 x 0 8 y 0 3 < 2 ( 4 x 0 + 4 y 0 + 1 ) 0 , y 6 = x 5 | y 5 | + 1 = 8 x 0 + 8 y 0 < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 4 x + 4 y 0 and 8 x + 8 y 1 < 0 } , then
    x 7 = | x 6 | y 6 4 = 8 x 0 + 8 y 0 1 < 0 , y 7 = x 6 | y 6 | + 1 = 8 x 0 8 y 0 2 < 2 ( 4 x 0 + 4 y 0 ) 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 8 x + 8 y 1 0 and 16 x + 16 y 3 < 0 } , then
    x 9 = | x 8 | y 8 4 = 16 x 0 16 y 0 + 1 < 2 ( 8 x 0 + 8 y 0 1 ) 0 , y 9 = x 8 | y 8 | + 1 = 16 x 0 + 16 y 0 4 < 16 x 0 + 16 y 0 3 < 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 16 x + 16 y 3 0 and 4 x + 4 y 1 < 0 } , then
    x 10 = | x 9 | y 9 4 = 32 x 0 32 y 0 + 5 < 2 ( 16 x 0 + 16 y 0 3 ) 0 , y 10 = x 9 | y 9 | + 1 = 32 x 0 + 32 y 0 8 < 0 and y 10 = x 10 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 4 x + 4 y 1 0 and x y 4 < 0 } , then
    x 6 = | x 5 | y 5 4 = 5 , y 6 = x 5 | y 5 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if ( x 0 , y 0 ) ( x , y ) | x y 4 < 0 , x + y + 1 0 and y 19 8 , then
    x 7 = | x 6 | y 6 4 = 16 y 0 + 37 < 0 , y 7 = x 6 | y 6 | + 1 = 16 y 0 40 = 8 ( x 0 + y 0 + 1 ) + 8 ( x 0 y 0 4 ) < 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) ( x , y ) | x y 4 < 0 , x + y + 1 0 and 19 8 < y 9 4 , then
    x 6 = | x 5 | y 5 4 = 8 y 0 + 17 < 2 ( 4 y 0 + 9 ) 0 , y 6 = x 5 | y 5 | + 1 = 8 y 0 20 = 4 ( x 0 + y 0 + 1 ) + 4 ( x 0 y 0 4 ) < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if ( x 0 , y 0 ) ( x , y ) | x + y + 1 0 , 2 x + 2 y + 1 < 0 and 9 4 < y 2 , then
    x 4 = | x 3 | y 3 4 = 4 y 0 9 < 0 , y 4 = x 3 | y 3 | + 1 = 4 y 0 + 6 < 4 ( y 0 + 2 ) 0 and y 4 = x 4 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 5 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x + 2 y + 1 0 , x y 4 < 0 , x < 7 4 and y 2 , then
    x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 3 < 2 ( 2 x 0 + 2 y 0 + 1 ) 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 + 4 y 0 1 < 0 and y 5 = x 5 4 + 1 .
    Since x 0 < 7 4 and y 0 2 , y 5 = 4 x 0 + 4 y 0 < 7 8 < 0 . By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x + 2 y + 1 0 , x y 4 < 0 , x 7 4 and y 2 , then
    x 6 = | x 5 | y 5 4 = 8 x 0 + 13 < 8 x 0 + 14 = 2 ( 4 x 0 7 ) 0 , y 6 = x 5 | y 5 | + 1 = 8 x 0 16 and y 6 = x 6 4 + 1 .
    Since x 0 y 0 4 < 0 and y 0 2 , x 0 < y 0 + 4 2 . Then, y 6 = 8 ( x 0 2 ) < 0 . By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 .
Figure 2 shows regions considered in the proof of Case 1 of this lemma.
Case 2  ( x 0 , y 0 ) { ( x , y ) | x y 4 < 0 and x + y + 1 < 0 } . We have x 1 < 0 and y 1 < 0 . By using the result of Lemma 7, we have that
  • if x 0 < 1 , then
    x 2 = | x 1 | y 1 4 = 2 x 0 1 < 0 , y 2 = x 1 | y 1 | + 1 = 2 x 0 2 < 0 and y 2 = x 2 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 3 ;
  • if 1 x 0 < 5 4 , then
    x 4 = | x 3 | y 3 4 = 4 x 0 5 < 0 , y 4 = x 3 | y 3 | + 1 = 4 x 0 + 2 0 and y 4 = x 4 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 5 ;
  • if 5 4 x 0 < 11 8 , then
    x 6 = | x 5 | y 5 4 = 8 x 0 + 9 < 8 x 0 + 10 = 2 ( 4 x 0 5 ) 0 , y 6 = x 5 | y 5 | + 1 = 8 x 0 12 < 8 x 0 11 < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if x 0 11 8 , then
    x 7 = | x 6 | y 6 4 = 16 x 0 + 21 < 2 8 x 0 11 0 , y 7 = x 6 | y 6 | + 1 = 16 x 0 24 = 2 y 6 < 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 .
Figure 3 shows regions considered in the proof of Case 2 of this lemma.
Case 3  ( x 0 , y 0 ) { ( x , y ) | x y 4 0 and x + y + 1 < 0 } . We have x 1 0 and y 1 < 0 .
Case 3.1  ( x 0 , y 0 ) ( x , y ) | x y 4 0 , x < 1 and y > 9 2 . Then,
x 2 = | x 1 | y 2 4 = 2 y 0 9 < 0 , y 2 = x 1 | y 1 | + 1 = 2 x 0 2 < 0 .
By using the result of Lemma 7, we have that
  • if ( x 0 , y 0 ) ( x , y ) | x y 4 0 , 2 x 2 y 10 < 0 , x < 1 and y > 9 2 , then
    x 3 = | x 2 | y 2 4 = 2 x 0 + 2 y 0 + 7 < 2 ( x 0 y 0 4 ) 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 2 y 0 10 < 0 and y 3 = x 3 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 4 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 10 0 , 4 x 4 y 21 < 0 , x < 1 and y > 9 2 , then
    x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 21 < 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 + 4 y 0 + 18 0 and y 5 = x 5 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 ;
  • if ( x 0 , y 0 ) ( x , y ) | 4 x 4 y 21 0 , 8 x 8 y 43 < 0 , x < 1 and y > 9 2 , then
    x 7 = | x 6 | y 6 4 = 8 x 0 + 8 y 0 + 41 < 2 ( 4 x 0 4 y 0 21 ) 0 , y 7 = x 6 | y 6 | + 1 = 8 x 0 8 y 0 44 < 8 x 0 8 y 0 43 < 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) ( x , y ) | 8 x 8 y 43 0 , x < 1 and y > 9 2 , then
    x 8 = | x 7 | y 7 4 = 16 x 0 + 16 y 0 + 85 < 2 ( 8 x 0 8 y 0 43 ) 0 , y 8 = x 7 | y 7 | + 1 = 16 x 0 16 y 0 88 < 16 + 72 88 = 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 .
Case 3.2  ( x 0 , y 0 ) ( x , y ) | x y 4 0 , x + y + 1 < 0 , x 1 and y > 9 2 . We have the same ( x 2 , y 2 ) as in Case 3.1, while x 2 < 0 and y 2 0 . By using the results of Lemmas 5 and 8, we have that
  • if ( x 0 , y 0 ) ( x , y ) | 8 x 8 y 27 0 , 1 x < 5 4 and y > 9 2 , then
    x 8 = | x 7 | y 7 4 = 16 x 0 + 16 y 0 + 53 < 2 ( 8 x 0 8 y 0 27 ) 0 , y 8 = x 7 | y 7 | + 1 = 16 x 0 16 y 0 56 < 16 + 72 56 = 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 8 x 8 y 27 < 0 , 4 x 4 y 13 0 , 1 x < 5 4 and y > 9 2 } , then
    x 7 = | x 6 | y 6 4 = 8 x 0 + 8 y 0 + 25 < 2 ( 4 x 0 4 y 0 13 ) 0 , y 7 = x 6 | y 6 | + 1 = 8 x 0 8 y 0 28 < 8 x 0 8 y 0 27 < 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 4 x 4 y 13 < 0 , 2 x 2 y 6 0 , 1 x < 5 4 and y > 9 2 } , then
    x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 13 < 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 + 4 y 0 + 10 < 2 ( 2 x 0 2 y 0 6 ) 0 and y 5 = x 5 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 ;
  • if ( x 0 , y 0 ) ( x , y ) | 4 x 4 y 23 0 , 2 x 2 y 6 0 , and y > 9 2 , then
    x 7 = | x 6 | y 6 4 = 8 x 0 + 8 y 0 + 45 < 2 ( 4 x 0 4 y 0 23 ) 0 , y 7 = x 6 | y 6 | + 1 = 8 x 0 8 y 0 48 < 2 ( 4 x 0 + 4 y 0 23 ) 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) ( x , y ) | 4 x 4 y 23 < 0 , 2 x 2 y 6 0 , and x > 5 4 , then
    x 6 = | x 5 | y 5 4 = 8 x 0 + 9 < 2 ( 4 x 0 5 ) < 0 , y 6 = x 5 | y 5 | + 1 = 8 x 0 12 < 8 x 0 11 = ( 4 x 0 4 y 0 23 ) 2 ( 2 x 0 2 y 0 6 ) < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if ( x 0 , y 0 ) ( x , y ) | x y 4 0 , x + y + 1 < 0 , 2 x 2 y 6 < 0 and 1 x < 5 4 , then
    x 4 = | x 3 | y 3 4 = 4 x 0 5 < 0 , y 4 = x 3 | y 3 | + 1 = 4 x 0 + 2 < 4 ( x 0 1 ) 0 and y 4 = x 4 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 5 ;
  • if ( x 0 , y 0 ) ( x , y ) | x y 4 0 , 2 x 2 y 6 < 0 and 5 4 x < 11 8 , then
    x 6 = | x 5 | y 5 4 = 8 x 0 + 9 < 2 ( 4 x 0 5 ) 0 , y 6 = x 5 | y 5 | + 1 = 8 x 0 12 < 8 x 0 11 < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if ( x 0 , y 0 ) ( x , y ) | x y 4 0 , 2 x 2 y 6 < 0 and 11 8 x < 3 2 , then
    x 7 = | x 6 | y 6 4 = 16 x 0 + 21 < 2 ( 8 x 0 11 ) 0 , y 7 = x 6 | y 6 | + 1 = 16 x 0 24 = 8 ( 2 x 0 3 ) < 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) ( x , y ) | x + y + 1 < 0 , 3 2 x < 25 16 and y > 9 2 , then
    x 8 = | x 7 | y 7 4 = 16 x 0 25 < 0 , y 8 = x 7 | y 7 | + 1 = 16 x 0 + 22 < 8 ( 2 x 0 3 ) 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if ( x 0 , y 0 ) ( x , y ) | x + y + 1 < 0 , 25 16 x < 51 32 and y > 9 2 , then
    x 10 = | x 9 | y 9 4 = 32 x 0 + 49 < 2 ( 16 x 0 25 ) 0 , y 10 = x 9 | y 9 | + 1 = 32 x 0 52 < 32 x 0 51 < 0 and y 10 = x 10 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if ( x 0 , y 0 ) ( x , y ) | x + y + 1 < 0 , 51 32 x < 13 8 and y > 9 2 , then
    x 11 = | x 10 | y 10 4 = 64 x 0 + 101 < 2 ( 32 x 0 51 ) 0 , y 11 = x 10 | y 10 | + 1 = 64 x 0 104 < 0 and y 11 = x 11 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 12 ;
  • if ( x 0 , y 0 ) ( x , y ) | x + y + 1 < 0 , x 13 8 and y > 9 2 , then
    x 7 = | x 6 | y 6 4 = 5 , y 7 = x 6 | y 6 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 12 .
Case 3.3  ( x 0 , y 0 ) ( x , y ) | x + y + 1 < 0 , x < 1 and y 9 2 . We have the same ( x 2 , y 2 ) as in Case 3.2, while x 2 0 , y 2 < 0 and
x 3 = | x 2 | y 2 4 = 2 x 0 2 y 0 11 < 2 x 0 2 y 0 10 < 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 2 y 0 10 < 0 .
By using the result of Lemma 7, we have that
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 10 < 0 , x < 1 and y 9 2 , then
    x 4 = | x 3 | y 3 4 = 4 y 0 + 17 < 2 ( 2 y 0 + 9 ) 0 , y 4 = x 3 | y 3 | + 1 = 4 y 0 20 < 2 ( 2 x 0 2 y 0 10 ) < 0 and y 4 = x 4 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 5 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 10 0 , 4 x 4 y 21 < 0 and y 9 2 , then
    x 5 = | x 4 | y 4 4 = 4 x 0 4 y 0 21 < 0 , y 5 = x 4 | y 4 | + 1 = 4 x 0 + 4 y 0 + 18 < 2 ( 2 x 0 2 y 0 10 ) 0 and y 5 = x 5 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 6 ;
  • if ( x 0 , y 0 ) ( x , y ) | 4 x 4 y 21 0 , 8 x 8 y 43 < 0 and y 9 2 , then
    x 7 = | x 6 | y 6 4 = 8 x 0 + 8 y 0 + 41 < 2 ( 4 x 0 4 y 0 21 ) 0 , y 7 = x 6 | y 6 | + 1 = 8 x 0 8 y 0 44 < 8 x 0 8 y 0 43 < 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) ( x , y ) | 8 x 8 y 43 0 , 8 x 8 y 44 < 0 and y 9 2 , then
    x 8 = | x 7 | y 7 4 = 16 x 0 + 16 y 0 + 85 < 2 ( 8 x 0 8 y 0 43 ) 0 , y 8 = x 7 | y 7 | + 1 = 16 x 0 16 y 0 88 < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 8 x 8 y 44 0 , 2 x 2 y 11 < 0 , 16 x 16 y 89 < 0 and x < 1 } , then
    x 9 = | x 8 | y 8 4 = 16 x 0 16 y 0 89 < 0 , y 9 = x 8 | y 8 | + 1 = 16 x 0 + 16 y 0 + 86 < 2 ( 8 x 0 8 y 0 44 ) 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 16 x 16 y 89 0 , 2 x 2 y 11 < 0 , 32 x 32 y 179 < 0 and x < 1 } , then
    x 11 = | x 10 | y 10 4 = 32 x 0 + 32 y 0 + 177 < 2 ( 16 x 0 16 y 0 89 ) 0 , y 11 = x 10 | y 10 | + 1 = 32 x 0 32 y 0 180 < 32 x 0 32 y 0 179 < 0 and y 11 = x 11 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 12 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 32 x 32 y 179 0 , 2 x 2 y 11 < 0 , 8 x 8 y 45 < 0 and x < 1 } , then
    x 12 = | x 11 | y 11 4 = 64 x 0 + 64 y 0 + 357 < 2 ( 32 x 0 32 y 0 179 ) 0 , y 12 = x 11 | y 11 | + 1 = 64 x 0 64 y 0 360 < 0 and y 12 = x 12 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 13 ;
  • if ( x 0 , y 0 ) ( x , y ) | 8 x 8 y 45 0 , 2 x 2 y 11 < 0 and x < 1 , then
    x 8 = | x 7 | y 7 4 = 5 , y 8 = x 7 | y 7 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 13 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 11 0 and x < 1 32 , then
    x 9 = | x 8 | y 8 4 = 32 x 0 1 < 0 , y 9 = x 8 | y 8 | + 1 = 32 x 0 2 < 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 11 0 and 1 32 x < 3 64 , then
    x 11 = | x 10 | y 10 4 = 64 x 0 + 1 < 2 ( 32 x 0 1 ) 0 , y 11 = x 10 | y 10 | + 1 = 64 x 0 4 < 64 x 0 3 < 0 and y 11 = x 11 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 12 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 11 0 and 3 64 x < 1 16 , then
    x 12 = | x 11 | y 11 4 = 128 x 0 + 5 < 2 ( 64 x 0 3 ) 0 , y 12 = x 11 | y 11 | + 1 = 128 x 0 8 < 0 and y 12 = x 12 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 13 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 11 0 and 1 16 x < 1 , then
    x 8 = | x 7 | y 7 4 = 5 , y 8 = x 7 | y 7 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 13 .
Case 3.4  ( x 0 , y 0 ) ( x , y ) | x + y + 1 < 0 , x 1 and y 9 2 . We have the same ( x 2 , y 2 ) as in Case 3.2, while x 2 0 and y 2 0 . By using the results of Lemmas 2, 3 and 6, we have that
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 6 0 , 4 x + 4 y + 13 0 , x 1 and y 9 2 , then
    x 7 = | x 6 | y 6 4 = 8 x 0 8 y 0 27 < 2 ( 4 x 0 + 4 y 0 + 13 ) 0 , y 7 = x 6 | y 6 | + 1 = 8 x 0 + 8 y 0 + 24 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) ( x , y ) | 4 x + 4 y + 13 < 0 , 8 x 8 y 27 < 0 , x 1 and y 9 2 , then
    x 7 = | x 6 | y 6 4 = 8 x 0 + 8 y 0 + 25 < 2 ( 4 x 0 + 4 y 0 + 13 ) < 0 , y 7 = x 6 | y 6 | + 1 = 8 x 0 8 y 0 28 < 8 x 0 8 y 0 27 < 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 8 x 8 y 27 0 , 8 x 8 y 28 < 0 , x 1 and y 9 2 } , then
    x 8 = | x 7 | y 7 4 = 16 x 0 + 16 y 0 + 53 < 2 ( 8 x 0 8 y 0 27 ) 0 , y 8 = x 7 | y 7 | + 1 = 16 x 0 16 y 0 56 < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 8 x 8 y 28 0 , 16 x 16 y 57 < 0 and x 1 } , then
    x 9 = | x 8 | y 8 4 = 16 x 0 16 y 0 57 < 0 , y 9 = x 8 | y 8 | + 1 = 16 x 0 + 16 y 0 + 54 < 2 ( 8 x 0 8 y 0 28 ) 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 16 x 16 y 57 0 , 32 x 32 y 115 < 0 and x 1 } , then
    x 11 = | x 10 | y 10 4 = 32 x 0 + 32 y 0 + 113 < 2 ( 16 x 0 16 y 0 57 ) 0 , y 11 = x 10 | y 10 | + 1 = 32 x 0 32 y 0 116 < 32 x 0 32 y 0 115 < 0 and y 11 = x 11 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 12 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 32 x 32 y 115 0 , 8 x 8 y 29 < 0 and x 1 } , then
    x 12 = | x 11 | y 11 4 = 64 x 0 + 64 y 0 + 229 < 2 ( 32 x 0 32 y 0 115 ) 0 , y 12 = x 11 | y 11 | + 1 = 64 x 0 64 y 0 232 < 0 and y 12 = x 12 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 13 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 8 x 8 y 29 0 , 2 x 2 y 11 < 0 and x 1 } , then
    x 8 = | x 7 | y 7 4 = 5 , y 8 = x 7 | y 7 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 13 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 2 x 2 y 11 0 and x 1 } , then
    x 4 = | x 3 | y 3 4 = 9 , y 4 = x 3 | y 3 | + 1 = 4 .
    Similar to the proof of Case 6 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 13 ;
  • if ( x 0 , y 0 ) ( x , y ) | 2 x 2 y 6 < 0 , 16 x + 16 y + 47 < 0 and y 9 2 , then
    x 8 = | x 7 | y 7 4 = 16 x 0 + 16 y 0 + 47 < 0 , y 8 = x 7 | y 7 | + 1 = 16 x 0 16 y 0 50 < 8 ( 2 x 0 2 y 0 6 ) < 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 16 x + 16 y + 47 0 , 32 x + 32 y + 93 < 0 , and y 9 2 } , then
    x 10 = | x 9 | y 9 4 = 32 x 0 32 y 0 95 < 2 ( 16 x 0 + 16 y 0 + 47 ) 0 , y 10 = x 9 | y 9 | + 1 = 32 x 0 + 32 y 0 + 92 < 32 x 0 + 32 y 0 + 93 < 0 and y 10 = x 10 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if ( x 0 , y 0 ) { ( x , y ) | 32 x + 32 y + 93 0 , 8 x + 8 y + 23 < 0 and y 9 2 } , then
    x 11 = | x 10 | y 10 4 = 64 x 0 64 y 0 187 < 2 ( 32 x 0 + 32 y 0 + 93 ) 0 , y 11 = x 10 | y 10 | + 1 = 64 x 0 + 64 y 0 + 184 < 0 and y 11 = x 11 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 12 ;
  • if ( x 0 , y 0 ) ( x , y ) | 8 x + 8 y + 23 0 , x + y + 1 < 0 and y 9 2 , then
    x 7 = | x 6 | y 6 4 = 5 , y 7 = x 6 | y 6 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 12 .
Figure 4 shows regions considered in the proof of Case 3 of this lemma.
Case 4  ( x 0 , y 0 ) { ( x , y ) | x y 4 0 and x + y + 1 0 } . We have x 1 0 and y 1 0 . By using the results of Lemmas 2, 3 and 6, we have that
  • if y 0 15 8 , then
    x 6 = | x 5 | y 5 4 = 5 , y 6 = x 5 | y 5 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if 61 32 y 0 < 15 8 , then
    x 10 = | x 9 | y 9 4 = 64 y 0 123 < 2 ( 32 y 0 + 61 ) 0 , y 10 = x 9 | y 9 | + 1 = 64 y 0 + 120 < 0 and y 10 = x 10 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if 31 16 y 0 < 61 32 , then
    x 9 = | x 8 | y 8 4 = 32 y 0 63 < 2 ( 16 y 0 + 31 ) 0 , y 9 = x 8 | y 8 | + 1 = 32 y 0 + 60 < 32 y 0 + 61 < 0 and y 9 = x 9 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 10 ;
  • if 2 y 0 < 31 16 , then
    x 7 = | x 6 | y 6 4 = 16 y 0 + 31 < 0 , y 7 = x 6 | y 6 | + 1 = 16 y 0 34 < 16 ( y 0 + 2 ) 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if 9 4 < y 0 < 2 , then
    x 6 = | x 5 | y 5 4 = 8 y 0 19 < 2 ( 4 y 0 + 9 ) < 0 , y 6 = x 5 | y 5 | + 1 = 8 y 0 + 16 < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if 19 8 < y 0 9 4 , then
    x 6 = | x 5 | y 5 4 = 8 y 0 + 17 < 2 ( 4 y 0 + 9 ) 0 , y 6 = x 5 | y 5 | + 1 = 8 y 0 20 < 8 y 0 19 < 0 and y 6 = x 6 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 7 ;
  • if 20 8 < y 0 19 8 , then
    x 7 = | x 6 | y 6 4 = 16 y 0 + 37 < 2 ( 8 y 0 + 19 ) 0 , y 7 = x 6 | y 6 | + 1 = 16 y 0 40 < 0 and y 7 = x 7 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 8 ;
  • if 41 16 < y 0 20 8 , then
    x 8 = | x 7 | y 7 4 = 16 y 0 41 < 0 , y 8 = x 7 | y 7 | + 1 = 16 y 0 + 38 < 2 ( 8 y 0 + 20 ) 0 and y 8 = x 8 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 9 ;
  • if 83 32 < y 0 41 16 , then
    x 10 = | x 9 | y 9 4 = 32 y 0 + 81 < 2 ( 16 y 0 + 41 ) 0 , y 10 = x 9 | y 9 | + 1 = 32 y 0 84 < 32 y 0 83 < 0 and y 10 = x 10 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 11 ;
  • if 21 8 < y 0 83 32 , then
    x 11 = | x 10 | y 10 4 = 64 y 0 + 165 < 2 ( 32 y 0 + 83 ) 0 , y 11 = x 10 | y 10 | + 1 = 64 y 0 168 < 0 and y 11 = x 11 4 + 1 .
    By Lemma 1, we have ( x n , y n ) = ( 1 , 2 ) for all n 12 ;
  • if 9 2 < y 0 21 8 , then
    x 7 = | x 6 | y 6 4 = 5 , y 7 = x 6 | y 6 | + 1 = 0 .
    Similar to the proof of Case 4 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 12 ;
  • if y 0 9 2 , then
    x 3 = | x 2 | y 2 4 = 9 , y 3 = x 2 | y 2 | + 1 = 4 .
    Similar to the proof of Case 6 of Lemma 2, we can conclude that ( x n , y n ) = ( 1 , 2 ) for all n 13 .
Figure 5 shows regions considered in the proof of Case 4 of this lemma.
Therefore, as we combine Lemmas 2–9, we can have the following theorem. It can be seen that the solutions do not show any periodic behavior. This is not the same as the other values of b considered in [11,14,15,17].
Theorem 1.
If b = 4 , ( x 0 , y 0 ) R 2 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 2 ) of (2) within 14 iterations.

3. Local Behavior for b ≥ 5

In this section, we investigate local behavior for several values of b 5 .

3.1. b = 5

First, let us start with b = 5 where x 0 = 0 or y 0 = 0 .
Lemma 10.
If x 0 0 and y 0 = 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 3 ) of (2).
Proof. 
By separate cases as in Lemma 2, we can conclude the behavior of the solution in Table 4.
Lemma 11.
If x 0 = 0 and y 0 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 3 ) of (2).
Proof. 
By separate cases as in Lemma 2, we can conclude the behavior of the solution in Table 5.
Lemma 12.
If x 0 = 0 and y 0 < 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 3 ) of (2).
Proof. 
By separate cases as in Lemma 2, we can conclude the behavior of the solution in Table 6.
Lemma 13.
If x 0 < 0 and y 0 = 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the equilibrium point ( 1 , 3 ) of (2).
Proof. 
By separate cases as in Lemma 2, we can conclude the behavior of the solution in Table 7.

3.2. b 5 with Large Value of | x 0 | and | y 0 |

It can be seen from Lemmas 2–5 and 10–13 that if ( x 0 and | y 0 | is large enough) or ( y 0 and | x 0 | is large enough), then we can easily determine the behavior of the solutions without considering several cases. However, for these initial conditions, it possesses the periodic behavior.
Lemma 14.
If b 6 , x 0 b and y 0 = 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the periodic solution of prime period 5 of (2).
Proof. 
Let b 6 , x 0 b and y 0 = 0 . Then,
x 1 = | x 0 | y 0 b = x 0 b 0 , y 1 = x 0 | y 0 | + 1 = x 0 + 1 0 x 2 = | x 1 | y 1 b = 2 b 1 < 0 , y 2 = x 1 | y 1 | + 1 = b < 0 x 3 = | x 2 | y 2 b = 2 b + 1 > 0 , y 3 = x 2 | y 2 | + 1 = 3 b < 0 x 4 = | x 3 | y 3 b = 4 b + 1 > 0 , y 4 = x 3 | y 3 | + 1 = b + 2 4 < 0 x 5 = | x 4 | y 4 b = 4 b 1 23 > 0 , y 5 = x 4 | y 4 | + 1 = 3 b + 4 > 0 x 6 = | x 5 | y 5 b = 5 , y 6 = x 5 | y 5 | + 1 = b 4 2 > 0 x 7 = | x 6 | y 6 b = 2 b + 9 3 < 0 , y 7 = x 6 | y 6 | + 1 = b < 0 x 8 = | x 7 | y 7 b = 2 b 9 3 > 0 , y 8 = x 7 | y 7 | + 1 = 3 b + 10 8 < 0 x 9 = | x 8 | y 8 b = 4 b 19 5 > 0 , y 9 = x 8 | y 8 | + 1 = b + 2 4 < 0 x 10 = | x 9 | y 9 b = 4 b 21 3 > 0 , y 10 = x 9 | y 9 | + 1 = 3 b 16 2 > 0 x 11 = | x 10 | y 10 b = 5 = x 6 , y 11 = x 10 | y 10 | + 1 = b 4 = y 6 .
By mathematical induction, we have x n + 5 = x n and y n + 5 = y n for all n 6 . □
Lemma 15.
If b 6 , x 0 = 0 and y 0 b 4 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the periodic solution of prime period 5 of (2).
Proof. 
Let b 6 , x 0 = 0 and y 0 b 4 . Then,
x 1 = | x 0 | y 0 b = y 0 b < 0 , y 1 = x 0 | y 0 | + 1 = y 0 + 1 b + 4 4 1 2 < 0 x 2 = | x 1 | y 1 b = 2 y 0 1 b 2 2 2 > 0 , y 2 = x 1 | y 1 | + 1 = 2 y 0 b + 2 3 b + 4 2 7 < 0 x 3 = | x 2 | y 2 b = 4 y 0 3 b 3 3 > 0 , y 3 = x 2 | y 2 | + 1 = b + 2 4 < 0 x 4 = | x 3 | y 3 b = 4 y 0 5 b 5 1 > 0 , y 4 = x 3 | y 3 | + 1 = 4 y 0 b 0 x 5 = | x 4 | y 4 b = 5 , y 5 = x 4 | y 4 | + 1 = b 4 2 > 0 .
Similar to Lemma 14, we can conclude by mathematical induction that x n + 5 = x n and y n + 5 = y n for all n 5 . □
Lemma 16.
If b 6 , x 0 3 2 b + 1 and y 0 = 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the periodic solution of prime period 5 of (2).
Proof. 
Let b 6 , x 0 3 2 b + 1 and y 0 = 0 . Then,
x 1 = | x 0 | y 0 b = x 0 b 3 2 b 1 b 2 > 0 , y 1 = x 0 | y 0 | + 1 = x 0 + 1 3 2 b + 2 7 < 0 x 2 = | x 1 | y 1 b = 2 x 0 2 b 1 3 b 2 2 b 1 3 > 0 , y 2 = x 1 | y 1 | + 1 = b + 2 4 < 0 x 3 = | x 2 | y 2 b = 2 x 0 2 b 3 3 b 2 2 b 3 1 > 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 3 b + 2 3 b 2 3 b + 2 = 0 x 4 = | x 3 | y 3 b = 5 , y 4 = x 3 | y 3 | + 1 = b 4 2 > 0 .
Similar to Lemma 14, we can conclude by mathematical induction that x n + 5 = x n and y n + 5 = y n for all n 4 . □
Lemma 17.
If b 6 , x 0 = 0 and y 0 3 2 b + 1 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes the periodic solution of prime period 5 of (2).
Proof. 
Let b 6 , x 0 = 0 and y 0 3 2 b + 1 . Then,
x 1 = | x 0 | y 0 b = y 0 b 3 2 b 1 b 2 > 0 , y 1 = x 0 | y 0 | + 1 = y 0 + 1 3 2 b + 2 7 < 0 x 2 = | x 1 | y 1 b = 2 y 0 2 b 1 3 b 3 2 b 1 2 > 0 , y 2 = x 1 | y 1 | + 1 = b + 2 4 < 0 x 3 = | x 2 | y 2 b = 2 y 0 2 b 3 3 b 2 2 b 3 1 > 0 , y 3 = x 2 | y 2 | + 1 = 2 y 0 3 b + 2 3 b 2 3 b + 2 = 0 x 4 = | x 3 | y 3 b = 5 , y 4 = x 3 | y 3 | + 1 = b 4 2 > 0 .
Similar to Lemma 14, we can conclude by mathematical induction that x n + 5 = x n and y n + 5 = y n for all n 4 . □
Next, if x 0 y 0 > 0 and | x 0 | and | y 0 | are large enough, we can conclude the following theorem about the solution of (2) when b 5 .
Lemma 18.
If b 5 and ( x 0 , y 0 ) { ( x , y ) R + × R + | x y b 0 } , then the solution ( x n , y n ) n = 0 of (2) eventually becomes (i) the equilibrium point ( 1 , 3 ) of (2) for b = 5 and (ii) the periodic solution of prime period 5 of (2).
Proof. 
(i). Let b = 5 and ( x 0 , y 0 ) { ( x , y ) R + × R + | x y 5 0 } . Then,
x 1 = | x 0 | y 0 5 = x 0 y 0 5 , y 1 = x 0 | y 0 | + 1 = x 0 y 0 + 1 > x 0 y 0 5 0 x 2 = | x 1 | y 1 5 = 11 , y 2 = x 1 | y 1 | + 1 = 5 x 3 = | x 2 | y 2 5 = 11 , y 3 = x 2 | y 2 | + 1 = 15 x 4 = | x 3 | y 3 5 = 21 , y 4 = x 3 | y 3 | + 1 = 3 x 5 = | x 4 | y 4 5 = 19 , y 5 = x 4 | y 4 | + 1 = 19 x 6 = | x 5 | y 5 5 = 5 , y 6 = x 5 | y 5 | + 1 = 1 .
By direct computation, we can conclude that ( x n , y n ) = ( 1 , 3 ) for all n 12 .
(ii) Let b 6 and ( x 0 , y 0 ) { ( x , y ) R + × R + | x y b 0 } . Then,
x 1 = | x 0 | y 0 b = x 0 y 0 b , y 1 = x 0 | y 0 | + 1 = x 0 y 0 + 1 > x 0 y 0 b 0 x 2 = | x 1 | y 1 b = 2 b 1 < 0 , y 2 = x 1 | y 1 | + 1 = b < 0 .
Similar to Lemma 14, we can conclude by mathematical induction that x n + 5 = x n and y n + 5 = y n for all n 6 . □
Lemma 19.
If b 5 and ( x 0 , y 0 ) ( x , y ) R × R | x y 3 2 b + 1 0 , then the solution ( x n , y n ) n = 0 of (2) eventually becomes (i) the equilibrium point ( 1 , 3 ) of (2) for b = 5 and (ii) the periodic solution of prime period 5 of (2).
Proof. 
(i). Let b = 5 and ( x 0 , y 0 ) ( x , y ) R × R | x y 17 2 0 . Then,
x 1 = | x 0 | y 0 5 = x 0 y 0 5 > x 0 y 0 17 2 0 , y 1 = x 0 | y 0 | + 1 = x 0 + y 0 + 1 < x 0 + y 0 + 17 2 0 x 2 = | x 1 | y 1 5 = 2 x 0 2 y 0 11 > 2 x 0 y 0 17 2 0 , y 2 = x 1 | y 1 | + 1 = 3 x 3 = | x 2 | y 2 5 = 2 x 0 2 y 0 13 > 2 x 0 y 0 17 2 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 2 y 0 13 = x 3 0 x 4 = | x 3 | y 3 5 = 5 , y 4 = x 3 | y 3 | + 1 = 1 .
Similar to the proof of Lemma 18(i), we can conclude that ( x n , y n ) = ( 1 , 3 ) for all n 10 .
Case (ii) Let b 6 and ( x 0 , y 0 ) ( x , y ) R × R | x y 3 2 b + 1 0 . Since b 6 , b + 3 2 b = 1 2 b 3 > 1 , 2 + 1 = 3 < b = 2 b + 3 b and 3 + 1 = 4 < b = 2 b + 3 b . Thus, b > 3 2 b + 1 , 2 b 1 > 3 b + 2 and 2 b 3 > 3 b + 1 , respectively. Then,
x 1 = | x 0 | y 0 b = x 0 y 0 b > x 0 y 0 3 2 b + 1 0 , y 1 = x 0 | y 0 | + 1 = x 0 + y 0 + 1 < 3 2 b + 1 + 1 7 < 0 x 2 = | x 1 | y 1 b = 2 x 0 2 y 0 2 b 1 > 2 x 0 2 y 0 3 b + 2 0 , y 2 = x 1 | y 1 | + 1 = b + 2 4 < 0 x 3 = | x 2 | y 2 b = 2 x 0 2 y 0 2 b 3 > 2 x 0 2 y 0 3 b + 2 0 , y 3 = x 2 | y 2 | + 1 = 2 x 0 2 y 0 3 b + 2 0 x 4 = | x 3 | y 3 b = 5 , y 4 = x 3 | y 3 | + 1 = b 4 2 > 0 .
Similar to Lemma 14, we can conclude by mathematical induction that x n + 5 = x n and y n + 5 = y n for all n 4 . □

4. Conclusions and Discussion

It is shown completely that for b = 4 , all solutions of (2) eventually becomes the equilibrium point ( 1 , 2 ) . It is also suspected from Lemmas 10–13 and Lemmas 18 (i)–19 (i) that for b = 5 , all solutions of (2) eventually becomes the equilibrium point ( 1 , 3 ) , while for b 6 , concerning the solutions of (2) with a chance to possess the periodic behavior of prime period 5 and for some small values of | x 0 | and | y 0 | , it may also becomes the equilibrium point.
As we mentioned before that since the absolute value function is not differentiable, one needs to find an alternative method to analyze the behavior of (2). Thus, we choose to use a fundamental method to complete our full analysis. However, this give some insight to those who want to do further investigation concerning this type of problem. For example, (i) one can roughly see how many cases need to be considered for each value of b; (ii) one can see, for a big region, that the behavior of the solutions remains the same; (iii) one can estimate the maximum iteration until the behavior of the solutions become either equilibrium or periodic.
Finally, these complete results for b = 4 and partial results for b = 5 , where all solutions asymptotically become equilibrium, are in contrast with the existing results concerning Equation (1) which usually involving periodic behavior. Thus, one may try to consider these cases of b and prove our conjecture that only for b = 4 and 5 do all solutions eventually become the equilibrium point, while for b 6 all solutions eventually become either equilibrium or periodic of prime period 5.

Author Contributions

Conceptualization, B.A., R.B. and N.K.; methodology, B.A., R.B. and N.K.; validation, B.A., R.B. and N.K.; formal analysis, B.A.; investigation, B.A.; resources, B.A.; writing—Original draft preparation, B.A.; writing—Review and editing, R.B. and N.K.; visualization, B.A.; supervision, R.B. and N.K.; project administration, R.B. and N.K.; funding acquisition, B.A. and R.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

The study did not involve humans or animals.

Informed Consent Statement

The study did not involve humans.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Botella–Soler, V.; Castelo, J.M.; Oteo, J.A.; Ros, J. Bifurcations in the Lozi map. J. Phys. A Math. Theor. 2011, 44, 1–17. [Google Scholar] [CrossRef] [Green Version]
  2. Lozi, R. Un attracteur etrange du type attracteur de Henon. J. Phys. 1978, 39, 9–10. [Google Scholar] [CrossRef]
  3. Barnsley, M.F.; Devaney, R.L.; Mandelbrot, B.B.; Peitgen, H.O.; Saupe, D.; Voss, R.F. The Science of Fractal Images; Springer: New York, NY, USA, 1991. [Google Scholar]
  4. Devaney, R.L. A piecewise linear model of the zones of instability of an area-preserving map. Physica D 1984, 10, 387–393. [Google Scholar] [CrossRef]
  5. Kulenović, M.R.S.; Merino, O. Discrete Dynamic Systems and Difference Equations with Mathematica; Chapman and Hall/CRC: New York, NY, USA, 2002. [Google Scholar]
  6. Grove, E.A.; Ladas, G. Periodicities in Nonlinear Difference Equations; Chapman and Hall/CRC: New York, NY, USA, 2005. [Google Scholar]
  7. Kocic, V.L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications; Kluwer Academic: Boston, MA, USA, 1993. [Google Scholar]
  8. Tikjha, W.; Lapierre, E.G.; Lenbury, Y. On the global character of the system of piecewise linear difference equations xn+1 = |xn| − yn − 1 and yn+1 = xn − |yn|. Adv. Differ. Equ. 2010, 2010, 57381. [Google Scholar] [CrossRef] [Green Version]
  9. Grove, E.A.; Lapierre, E.; Tikjha, W. On the global behavior of xn+1 = |xn| − yn − 1 and yn+1 = xn + |yn|. Cubo Math. J. 2012, 14, 111–152. [Google Scholar] [CrossRef]
  10. Lapierre, E.G. On the Global Behavior of Some Systems of Difference. Ph.D. Thesis, University of Rhode Island, Kingston, RI, USA, 2013. [Google Scholar]
  11. Kongtan, T.; Tikjha, W. Prime period 4 solution of cartain piecewise linear system of difference equation xx + 1 = |xn| − yn − 2 and yn+1 = xn − |yn| + 1 with initial conditions x0 = 0 and y0∈( 1 2 , ∞). Rajabhat Math. J. 2016, 1, 81–87. [Google Scholar]
  12. Tikjha, W.; Lapierre, E.; Lenbury, Y. Periodic solutions of a generalized system of piecewise linear difference equations. Adv. Differ. Equ. 2015, 2015, 248. [Google Scholar] [CrossRef] [Green Version]
  13. Tikjha, W.; Lapierre, E.; Sitthiwirattham, T. The stable equilibrium of a system of piecewise linear difference equations. Adv. Differ. Equ. 2017, 2017, 67. [Google Scholar] [CrossRef] [Green Version]
  14. Tikjha, W. Prime period 4 solution and equilibrium point of the system of difference equation xn+1 = |xn| − yn − 2 and yn+1 = xn − |yn| + 1 where x0 = 0 and 0 < y0 < 1 2 . Srinakharinwirot Sci. J. 2017, 33, 183–194. (In Thai) [Google Scholar]
  15. Tikjha, W.; Piasu, K. A necessary condition for eventually equilibrium or periodic to a system of difference equations. J. Comput. Anal. Appl. 2020, 28, 254–260. [Google Scholar]
  16. Tikjha, W.; Lapierre, E. Periodic solutions of a system of piecewise linear difference equations. Kyungpook Math. J. 2020, 60, 401–413. [Google Scholar] [CrossRef] [Green Version]
  17. Tikjha, W.; Watcharasuntonkit, S.; Rartchapan, N. Equilibrium Point and Prime Period 4 in Certain Piecewise Linear System of Difference Equation, NU. Int. J. Sci. 2020, 17, 14–22. [Google Scholar]
Figure 1. Regions of each case considered when x 0 < 0 and y 0 > 0 .
Figure 1. Regions of each case considered when x 0 < 0 and y 0 > 0 .
Mathematics 09 01390 g001
Figure 2. Regions considered in the proof of Case 1.
Figure 2. Regions considered in the proof of Case 1.
Mathematics 09 01390 g002
Figure 3. Regions considered in the proof of Case 2.
Figure 3. Regions considered in the proof of Case 2.
Mathematics 09 01390 g003
Figure 4. Regions considered in the proof of Case 3.
Figure 4. Regions considered in the proof of Case 3.
Mathematics 09 01390 g004
Figure 5. Regions considered in the proof of Case 4.
Figure 5. Regions considered in the proof of Case 4.
Mathematics 09 01390 g005
Table 1. Cases for x 0 = 0 and y 0 0 .
Table 1. Cases for x 0 = 0 and y 0 0 .
If y 0 A ,Then ( x n , y n ) = ( 1 , 2 ) for All n N
A = 1 4 , 1 2 ; 1 2 , 1 N = 6
A = 0 , 1 4 ; 1 , 9 8 N = 7
A = 9 8 , 19 16 N = 9
A = 19 16 , 5 4 ; 5 4 , N = 10
Table 2. Cases for x 0 = 0 and y 0 < 0 .
Table 2. Cases for x 0 = 0 and y 0 < 0 .
If y 0 A ,Then ( x n , y n ) = ( 1 , 2 ) for All n N
A = { 3 } N = 1
A = [ 4 , 1 ) \ { 3 } N = 2
A = 9 2 , 4 ; 1 , 1 2 N = 4
A = 5 , 9 2 N = 5
A = 21 4 , 5 ; 1 2 , 1 4 N = 6
A = 1 4 , 0 N = 7
A = 43 8 , 21 4 N = 8
A = , 11 2 ; 11 2 , 43 8 N = 9
Table 3. Cases for x 0 < 0 and y 0 = 0 .
Table 3. Cases for x 0 < 0 and y 0 = 0 .
If x 0 A ,Then ( x n , y n ) = ( 1 , 2 ) for All n N
A = { 3 } N = 1
A = ( 4 , 1 ) \ { 3 } N = 2
A = 9 2 , 4 ; 1 , 1 2 N = 4
A = 5 , 9 2 N = 5
A = 21 4 , 5 ; 1 2 , 1 4 N = 6
A = 1 4 , 0 N = 7
A = 43 8 , 21 4 N = 8
A = , 11 2 ; 11 2 , 43 8 N = 9
Table 4. Cases for x 0 0 and y 0 = 0 .
Table 4. Cases for x 0 0 and y 0 = 0 .
If x 0 A ,Then ( x n , y n ) = ( 1 , 3 ) for All n N
A = 0 , 1 8 N = 7  
A = 1 8 , 3 16 N = 9  
A = 3 16 , 7 32 N = 11  
A = 7 32 , 1 4 ; 1 4 , 1 ; ( 1 , 5 ) ; [ 5 , ) N = 12
Table 5. Cases for x 0 = 0 and y 0 0 .
Table 5. Cases for x 0 = 0 and y 0 0 .
If y 0 A ,Then ( x n , y n ) = ( 1 , 3 ) for All n N
A = 1 4 , 1 2 ; 1 2 , 1 ; 1 , 9 8 N = 6
A = 0 , 1 4 N = 7
A = 9 8 , 19 16 N = 8
A = 19 16 , 39 32 N = 10
A = 39 32 , 5 4 ; 5 4 , N = 11
Table 6. Cases for x 0 = 0 and y 0 < 0 .
Table 6. Cases for x 0 = 0 and y 0 < 0 .
If y 0 A ,Then ( x n , y n ) = ( 1 , 3 ) for All n N
A = { 4 } N = 1
A = ( 5 , 1 ) \ { 4 } N = 2
A = 11 2 , 5 ; 1 , 1 2 N = 4
A = 25 4 , 11 2 N = 5
A = 1 2 , 1 4 N = 6
A = 51 8 , 25 4 ; 1 4 , 0 N = 7
A = 103 16 , 51 8 N = 9
A = , 13 2 ; 13 2 , 103 16 N = 10
Table 7. Cases for x 0 < 0 and y 0 = 0 .
Table 7. Cases for x 0 < 0 and y 0 = 0 .
If x 0 A ,Then ( x n , y n ) = ( 1 , 3 ) for All n N
A = { 4 } N = 1
A = ( 5 , 1 ) \ { 4 } N = 2
A = 11 2 , 5 ; 1 , 1 2 N = 4
A = 25 4 , 11 2 N = 5
A = 1 2 , 1 4 N = 6
A = 51 8 , 25 4 ; 1 4 , 0 N = 7
A = 103 16 , 51 8 N = 9
A = , 13 2 ; 13 2 , 103 16 N = 10
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Aiewcharoen, B.; Boonklurb, R.; Konglawan, N. Global and Local Behavior of the System of Piecewise Linear Difference Equations xn+1 = |xn| − ynb and yn+1 = xn − |yn| + 1 Where b ≥ 4. Mathematics 2021, 9, 1390. https://doi.org/10.3390/math9121390

AMA Style

Aiewcharoen B, Boonklurb R, Konglawan N. Global and Local Behavior of the System of Piecewise Linear Difference Equations xn+1 = |xn| − ynb and yn+1 = xn − |yn| + 1 Where b ≥ 4. Mathematics. 2021; 9(12):1390. https://doi.org/10.3390/math9121390

Chicago/Turabian Style

Aiewcharoen, Busakorn, Ratinan Boonklurb, and Nanthiya Konglawan. 2021. "Global and Local Behavior of the System of Piecewise Linear Difference Equations xn+1 = |xn| − ynb and yn+1 = xn − |yn| + 1 Where b ≥ 4" Mathematics 9, no. 12: 1390. https://doi.org/10.3390/math9121390

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop