Non-Isothermal Hydrodynamic Characteristics of a Nanofluid in a Fin-Attached Rotating Tube Bundle
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Physical Model
2.2. Governing Equations
2.3. Boundary Conditions of the Problem
2.4. Thermophysical Properties of the Cu/Water Nanofluid
2.5. Numerical Procedure
2.6. Grid Independence Analysis
2.7. Validation of Numerical Procedure
2.7.1. Heat Transfer and Fluid Flow over Rotating-Type Tube Bundles
α | Ghazanfarian and Nobari [68] | Present Study | % |
---|---|---|---|
0.5 | 41.3 | 42.59 | 3.1 |
1 | 35.2 | 36.18 | 2.8 |
1.5 | 25.8 | 26.68 | 3.4 |
2.7.2. Nanofluid Flow and Heat Transfer in an Air-Finned Heat Exchanger (Comparison with Experimental Data)
3. Results and Discussion
3.1. Flow and Rotation Direction Effects
3.2. Heat Transfer Coefficient
3.3. Maximum Temperature
3.4. Pressure Drop
4. Conclusions
- Rotating tubes significantly affected the hydrodynamics of the tube bundle, which was installed inside the microchannel. Vortexes induced by the rotating tubes caused the fluid flow to transfer more thermal energy. A maximum heat transfer enhancement of 34.2% was achieved at Re = 10 by increasing the rotation speed from 0 to 500 rad/s.
- For all ranges of nanofluid concentrations and at high Re, increasing the rotation speed from 0 to 500 rad/s had no remarkable effect on the heat transfer and maximum temperature. The heat transfer enhancement was 6% at Re = 80.
- Adding nanoparticles to the base fluid noticeably enhanced the heat transfer coefficient. A maximum heat transfer enhancement of 42.3% was gained by adding 4 vol.% Cu nanoparticles at Re = 80 and ω = 500 rad/s.
- Rotating tubes generated a pressure drop through the microchannel. This was due to the fluid interaction caused by the fins.
- As a significant outcome, adding nanoparticles had no pressure drop augmentation. Nevertheless, a higher nanofluid concentration had a slightly lower pressure drop.
- At high Re, the pressure drop and heat transfer remained almost unchanged by applying rotation to the tube bundle.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
x, y, z | Cartesian coordinates (m) |
n | Number of phases |
Nu | Nusselt number |
P | Pressure (N·m−2) |
Re | Reynolds number |
hk | Sensible enthalpy for phase k (J·kg−1) |
Cp | Specific heat capacity (J·kg−1·K−1) |
T | Temperature (K) |
t | Time (s) |
k | Thermal conductivity (W·m−1·K−1) |
V | Velocity (m·s−1) |
h | Heat transfer coefficient (W·m−2·K−1) |
De | Hydraulic diameter (m) |
Pt | Tube pitch (m) |
D | Diameter (m) |
L | Length (m) |
Greek Symbols
p | Density (kg·m−3) |
μ | Dynamic viscosity (Pa·s) |
φ | Volume fraction of nanoparticles |
ω | Rotation speed (rad/s) |
Subscripts
eff | Effective |
Z | Indices |
m | Mixture |
p | Particle |
f | Fluid |
References
- Kaviany, M. Heat Transfer Physics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Rozati, S.A.; Montazerifar, F.; Akbari, O.A.; Hoseinzadeh, S.; Nikkhah, V.; Marzban, A.; Abdolvand, H.; Goodarzi, M. Natural convection heat transfer of water/Ag nanofluid inside an elliptical enclosure with different attack angles. Math. Methods Appl. Sci. 2020, 1–18. [Google Scholar] [CrossRef]
- Bakthavatchalam, B.; Habib, K.; Saidur, R.; Saha, B.B.; Irshad, K. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective. J. Mol. Liq. 2020, 305, 112787. [Google Scholar] [CrossRef]
- Pandya, N.S.; Shah, H.; Molana, M.; Tiwari, A.K. Heat transfer enhancement with nanofluids in plate heat exchangers: A comprehensive review. Eur. J. Mech. B/Fluids 2020, 81, 173–190. [Google Scholar] [CrossRef]
- Hale, N.W., Jr.; Viskanta, R. Solid-liquid phase-change heat transfer and interface motion in materials cooled or heated from above or below. Int. J. Heat Mass Transf. 1980, 23, 283–292. [Google Scholar] [CrossRef]
- Reddy, J.R.; Sugunamma, V.; Sandeep, N. Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects. Alex. Eng. J. 2018, 57, 2465–2473. [Google Scholar] [CrossRef]
- Akbari, O.A.; Afrouzi, H.H.; Marzban, A.; Toghraie, D.; Malekzade, H.; Arabpour, A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J. Therm. Anal. Calorim. 2017, 129, 1911–1922. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the 1995 International mechanical engineering congress and exhibition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Harish, R.; Sivakumar, R. Effects of nanoparticle dispersion on turbulent mixed convection flows in cubical enclosure considering Brownian motion and thermophoresis. Powder Technol. 2021, 378, 303–316. [Google Scholar] [CrossRef]
- Abdollahi-Moghaddam, M.; Motahari, K.; Rezaei, A. Performance characteristics of low concentrations of CuO/water nanofluids flowing through horizontal tube for energy efficiency purposes; an experimental study and ANN modeling. J. Mol. Liq. 2018, 271, 342–352. [Google Scholar] [CrossRef]
- Hong, Y.; Du, J.; Li, Q.; Xu, T.; Li, W. Thermal-hydraulic performances in multiple twisted tapes inserted sinusoidal rib tube heat exchangers for exhaust gas heat recovery applications. Energy Convers. Manag. 2019, 185, 271–290. [Google Scholar] [CrossRef]
- Ocłoń, P.; Łopata, S.; Stelmach, T.; Li, M.; Zhang, J.-F.; Mzad, H.; Tao, W.-Q. Design optimization of a high-temperature fin-and-tube heat exchanger manifold—A case study. Energy 2021, 215, 119059. [Google Scholar] [CrossRef]
- Sadeghianjahromi, A.; Wang, C.-C. Heat transfer enhancement in fin-and-tube heat exchangers—A review on different mechanisms. Renew. Sustain. Energy Rev. 2021, 137, 110470. [Google Scholar] [CrossRef]
- Sözen, A.; Variyenli, H.I.; Özdemir, M.B.; Gürü, M.; Aytaç, İ. Heat transfer enhancement using alumina and fly ash nanofluids in parallel and cross-flow concentric tube heat exchangers. J. Energy Inst. 2016, 89, 414–424. [Google Scholar] [CrossRef]
- Sajid, M.U.; Ali, H.M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renew. Sustain. Energy Rev. 2019, 103, 556–592. [Google Scholar] [CrossRef]
- Said, Z.; Rahman, S.; Assad, M.E.H.; Alami, A.H. Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid. Sustain. Energy Technol. Assess. 2019, 31, 306–317. [Google Scholar] [CrossRef]
- Sarafraz, M.M. Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. J. Appl. Fluid Mech. 2013, 6, 73–79. [Google Scholar]
- Sarafraz, M.; Hormozi, F. Application of thermodynamic models to estimating the convective flow boiling heat transfer coefficient of mixtures. Exp. Therm. Fluid Sci. 2014, 53, 70–85. [Google Scholar] [CrossRef]
- Li, Z.; Mazinani, A.; Hayat, T.; Al-Rashed, A.A.; Alsulami, H.; Goodarzi, M.; Sarafraz, M. Transient pool boiling and particulate deposition of copper oxide nano-suspensions. Int. J. Heat Mass Transf. 2020, 155, 119743. [Google Scholar] [CrossRef]
- Li, Z.; Sarafraz, M.M.; Mazinani, A.; Hayat, T.; Alsulami, H.; Goodarzi, M. Pool boiling heat transfer to CuO-H2O nanofluid on finned surfaces. Int. J. Heat Mass Transf. 2020, 156, 119780. [Google Scholar] [CrossRef]
- Mehta, K.S.; Kundan, L.; Mallick, S.S. A Study on Heat Transfer and Pressure Drop in a Turbulent Flow Regime of Thermally Insulated and Conducting Nanofluids. J. Nanofluids 2019, 8, 490–499. [Google Scholar] [CrossRef]
- Zheng, M.; Han, D.; Asif, F.; Si, Z. Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger. Heat Mass Transf. 2019, 56, 1127–1140. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Gróf, G. Efficiency of evacuated tube solar collector using WO3/Water nanofluid. Renew. Energy 2019, 134, 453–460. [Google Scholar] [CrossRef]
- Sadeghi, G.; Safarzadeh, H.; Ameri, M. Experimental and numerical investigations on performance of evacuated tube solar collectors with parabolic concentrator, applying synthesized Cu2O/distilled water nanofluid. Energy Sustain. Dev. 2019, 48, 88–106. [Google Scholar] [CrossRef]
- Arora, S.; Fekadu, G.; Subudhi, S. Energy and Exergy Analysis of Marquise Shaped Channel Flat Plate Solar Collector Using Al2O3—Water Nanofluid and Water. J. Sol. Energy Eng. 2019, 141. [Google Scholar] [CrossRef]
- Khanlari, A.; Sözen, A.; Variyenli, H.I.; Gürü, M. Comparison between heat transfer characteristics of TiO2/deionized water and kaolin/deionized water nanofluids in the plate heat exchanger. Heat Transf. Res. 2019, 50, 435–450. [Google Scholar] [CrossRef]
- Subramanian, R.; Kumar, A.S.; Vinayagar, K.; Muthusamy, C. Experimental analyses on heat transfer performance of TiO2–water nanofluid in double-pipe counter-flow heat exchanger for various flow regimes. J. Therm. Anal. Calorim. 2019, 140, 603–612. [Google Scholar] [CrossRef]
- Anvari, A.R.; Javaherdeh, K.; Emami-Meibodi, M. Investigation of Heat Transfer and Pressure Drop of Non-Newtonian Nanofluid Performance Through Micro Channels Heat Exchanger (MCHE) in Cross-Flow Configuration. J. Nanofluids 2019, 8, 631–639. [Google Scholar] [CrossRef]
- Mahay, N.; Yadav, R.K. An experimental investigation into heat transfer characteristics of aqua based Cu nanofluid for automobile radiator. In Proceedings of the 2nd International Conference on New Frontiers in Engineering, Science & Technology (NFEST), Kurukshetra, India, 18–22 February 2019; Volume 1240, p. 012043. [Google Scholar]
- Jadar, R.; Shashishekar, K.; Manohara, S. Performance Evaluation of Al-MWCNT based Automobile Radiator. Mater. Today Proc. 2019, 9, 380–388. [Google Scholar] [CrossRef]
- Maisuria, M.B.; Sonar, D.M.; Rathod, M.K.; Bhatt, M.K. Experimental and analytical investigation on an automobile radiator with CuO/EG-water based nanofluid as coolant. Heat Transfer-Asian Res. 2019, 48, 2596–2612. [Google Scholar] [CrossRef]
- Pourfayaz, F.; Imani, M.; Mehrpooya, M.; Shirmohammadi, R. Process development and exergy analysis of a novel hybrid fuel cell-absorption refrigeration system utilizing nanofluid as the absorbent liquid. Int. J. Refrig. 2019, 97, 31–41. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Effects of a rotating tube bundle on the hydrothermal performance for forced convection in a vented cavity with Ag-MgO/water hybrid and CNT-water nanofluids. J. Therm. Anal. Calorim. 2020, 1–18. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Numerical analysis and ANFIS modeling for mixed convection of CNT-water nanofluid filled branching channel with an annulus and a rotating inner surface at the junction. Int. J. Heat Mass Transf. 2018, 127, 583–599. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D.; Dehkordi, R.B.; Abed, H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J. Magn. Magn. Mater. 2019, 483, 224–248. [Google Scholar] [CrossRef]
- Khan, S.; Zou, R.; Yu, A. Computational simulation of air-side heat transfer and pressure drop performance in staggered mannered twisted oval tube bundle operating in cross-flow. Int. J. Therm. Sci. 2021, 161, 106748. [Google Scholar] [CrossRef]
- Khanafer, K.; Aithal, S.; Vafai, K. Mixed convection heat transfer in a differentially heated cavity with two rotating cylinders. Int. J. Therm. Sci. 2019, 135, 117–132. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Hydro-thermal performance of CNT nanofluid in double backward facing step with rotating tube bundle under magnetic field. Int. J. Mech. Sci. 2020, 185, 105876. [Google Scholar] [CrossRef]
- Marzban, A.; Sheikhzadeh, G.; Toghraie, D. Laminar flow and heat transfer of water/NDG nanofluid on tube banks with rhombic cross section with different longitudinal arrangements. J. Therm. Anal. Calorim. 2019, 140, 427–437. [Google Scholar] [CrossRef]
- Garmroodi, M.D.; Ahmadpour, A.; Talati, F. MHD mixed convection of nanofluids in the presence of multiple rotating cylinders in different configurations: A two-phase numerical study. Int. J. Mech. Sci. 2019, 150, 247–264. [Google Scholar] [CrossRef]
- Motahari, K.; Moghaddam, M.A.; Moradian, M. Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2 (20–80)/20W50 hybrid nano-lubricant. Chin. J. Chem. Eng. 2018, 26, 152–158. [Google Scholar] [CrossRef]
- Akbari, O.A.; Safaei, M.R.; Goodarzi, M.; Akbar, N.S.; Zarringhalam, M.; Shabani, G.A.S.; Dahari, M. A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Adv. Powder Technol. 2016, 27, 2175–2185. [Google Scholar] [CrossRef]
- Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids. J. Heat Transf. 2003, 125, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Chon, C.H.; Kihm, K.D.; Lee, S.P.; Choi, S.U.S. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 2005, 87, 153107. [Google Scholar] [CrossRef]
- Mintsa, H.A.; Roy, G.; Nguyen, C.T.; Doucet, D. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 2009, 48, 363–371. [Google Scholar] [CrossRef]
- Goodarzi, M.; Safaei, M.; Vafai, K.; Ahmadi, G.; Dahari, M.; Kazi, S.; Jomhari, N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int. J. Therm. Sci. 2014, 75, 204–220. [Google Scholar] [CrossRef]
- Karimipour, A.; Nezhad, A.H.; Behzadmehr, A.; Alikhani, S.; Abedini, E. Periodic mixed convection of a nanofluid in a cavity with top lid sinusoidal motion. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 2149–2160. [Google Scholar] [CrossRef] [Green Version]
- Dadsetani, R.; Salimpour, M.R.; Tavakoli, M.R.; Goodarzi, M.; Filho, E.P.B. Thermal and mechanical design of reverting microchannels for cooling disk-shaped electronic parts using constructal theory. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 245–265. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Abdulrazzaq, T.; Togun, H.; Goodarzi, M.; Kazi, S.N.; Ariffin, M.K.A.; Adam, N.M.; Hooman, K. Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction. J. Therm. Anal. Calorim. 2020, 141, 373–385. [Google Scholar] [CrossRef]
- Mat, M.N.H.; Asmuin, N.Z.; Basir, F.M.; Goodarzi, M.; Rahman, M.F.A.; Khairulfuaad, R.; Jabbar, B.A.; Kasihmuddin, M.S.M. Influence of divergent length on the gas-particle flow in dual hose dry ice blasting nozzle geometry. Powder Technol. 2020, 364, 152–158. [Google Scholar] [CrossRef]
- Truesdell, C.; Toupin, R. The classical field theories. In Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie; Springer: Berlin/Heidelberg, Germany, 1960; pp. 226–858. [Google Scholar]
- Eringen, A.; Ingram, J.D. A Continuum theory of chemically reacting media—I. Int. J. Eng. Sci. 1965, 3, 197–212. [Google Scholar] [CrossRef]
- Drumheller, D.S.; Bedford, A. A thermomechanical theory for reacting immiscible mixtures. Arch. Ration. Mech. Anal. 1980, 73, 257–284. [Google Scholar] [CrossRef]
- Abu-Zaid, S.; Ahmadi, G. A thermodynamically consistent rate-dependent model for turbulent two-phase flows. Int. J. Non-linear Mech. 1995, 30, 509–529. [Google Scholar] [CrossRef]
- Ahmadi, G. On mechanics of saturated granular materials. Int. J. Non-linear Mech. 1980, 15, 251–262. [Google Scholar] [CrossRef]
- Ahmadi, G. On the mechanics of incompressible multiphase suspensions. Adv. Water Resour. 1987, 10, 32–43. [Google Scholar] [CrossRef]
- Ahmadi, G.; Cao, J.; Schneider, L.; Sadiki, A. A thermodynamical formulation for chemically active multiphase turbulent flows. Int. J. Eng. Sci. 2006, 44, 699–720. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, G.; Ma, D. A thermodynamical formulation for dispersed multiphase turbulent flows—1: Basic theory. Int. J. Multiph. Flow 1990, 16, 323–340. [Google Scholar] [CrossRef]
- Behzadmehr, A.; Saffar-Avval, M.; Galanis, N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int. J. Heat Fluid Flow 2007, 28, 211–219. [Google Scholar] [CrossRef]
- Bahiraei, M.; Heshmatian, S.; Goodarzi, M.; Moayedi, H. CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurations. Adv. Powder Technol. 2019, 30, 2503–2516. [Google Scholar] [CrossRef]
- Arasteh, H.; Mashayekhi, R.; Goodarzi, M.; Motaharpour, S.H.; Dahari, M.; Toghraie, D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. J. Therm. Anal. Calorim. 2019, 138, 1461–1476. [Google Scholar] [CrossRef]
- Yousefzadeh, S.; Rajabi, H.; Ghajari, N.; Sarafraz, M.M.; Akbari, O.A.; Goodarzi, M. Numerical investigation of mixed convection heat transfer behavior of nanofluid in a cavity with different heat transfer areas. J. Therm. Anal. Calorim. 2020, 140, 2779–2803. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A.; Jalali, E.; Sarafraz, M.M.; Akbari, O.A.; Karimipour, A.; Goodarzi, M.; Bach, Q.-V. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 2683–2704. [Google Scholar] [CrossRef]
- Roache, P.J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J. Fluids Eng. 1994, 116, 405–413. [Google Scholar] [CrossRef]
- Sosnowski, M. Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology. Energies 2019, 12, 4660. [Google Scholar] [CrossRef] [Green Version]
- Ghazanfarian, J.; Nobari, M. A numerical study of convective heat transfer from a rotating cylinder with cross-flow oscillation. Int. J. Heat Mass Transf. 2009, 52, 5402–5411. [Google Scholar] [CrossRef]
- Vermahmoudi, Y.; Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Naraki, M. Experimental investigation on heat transfer performance of Fe2O3/water nanofluid in an air-finned heat exchanger. Eur. J. Mech. B/Fluids 2014, 44, 32–41. [Google Scholar] [CrossRef]
Author(s) | Type of Thermal Equipment | Nanoparticle | Base Fluid | Concentration (%) | Enhancement (%) |
---|---|---|---|---|---|
Sharafeldin and Gróf [23] | Evacuated tube solar collector | WO3 | Water | 0.014–0.028–0.042 vol. | 23 |
Sadeghi et al. [24] | Evacuated tube solar collector with parabolic concentrator | Cu2O | Distilled water | 0.01–0.08 vol. | 10 |
Arora et al. [25] | Marquise shaped channel solar flat-plate collector | Al2O3 | Water | 0.1 vol. | 39.2 |
Khanlari et al. [26] | Corrugated plate heat exchangers | TiO2 | Deionized water | 2 wt. | 12 |
Kaolin/deionized water | 18 | ||||
Subramanian et al. [27] | Double-pipe counter-flow heat exchanger | TiO2 | Water | 0.1–0.3–0.5 vol. | 15 |
Anvari et al. [28] | Cross-flow microchannels heat exchanger | SWCNT | carboxyl methylcellulose | 0.05–0.15 wt. | - |
Mahay and Yadav [29] | Automobile radiator | Cu | Water | 0.3–0.6–1 vol. | 39.53 |
Jadar et al. [30] | Automobile radiator | MWCNT | Water | - | 45 |
Maisuria et al. [31] | Automobile radiator | CuO | EG/water (40:60) | 0-1 vol. | 20 |
Pourfayaz [32] | Absorption chiller | Ag | Water | - | 81 |
Quarter | Designation | Value |
---|---|---|
Microchannel | Width | 800 µm |
Length | 2400 µm | |
Tube | Distance from the centerline | 250 µm |
Distance from the interior and exterior | 400 µm | |
Distance from the middle tube | 800 µm | |
Diameter | 100 µm | |
Fin | Numbers | 8 |
Width | 20 µm | |
Length | 20 µm |
Property | Water | Cu Nanoparticle | 2 Vol.% Nanofluid | 4 Vol.% Nanofluid |
---|---|---|---|---|
Thermal conductivity (W/m·K) | 0.6 | 400 | 0.9 | 1.13 |
Dynamic viscosity (Pa·s) | 0.000891 | - | 0.000937 | 0.000987 |
Density (kg/m3) | 997.1 | 8954 | 1156 | 1315 |
Heat capacity (J/kg·K) | 4179 | 383 | 3591 | 3145 |
Nodes Number | Maximum Temperature (K) | Pressure Drop (Pa) | Average Nusselt Number | |||
---|---|---|---|---|---|---|
% | Count | % | Count | % | Count | |
15,855 | - | 301.88 | - | 9.69 | - | 1.19 |
32,595 | 0.001 | 301.91 | 1.23 | 9.81 | 1.71 | 1.17 |
62,161 | 0.016 | 301.96 | 0.51 | 9.86 | 0.86 | 1.16 |
116,310 | 0.017 | 302.01 | 1.21 | 9.98 | 1.72 | 1.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazwari, M.A.; Safaei, M.R. Non-Isothermal Hydrodynamic Characteristics of a Nanofluid in a Fin-Attached Rotating Tube Bundle. Mathematics 2021, 9, 1153. https://doi.org/10.3390/math9101153
Alazwari MA, Safaei MR. Non-Isothermal Hydrodynamic Characteristics of a Nanofluid in a Fin-Attached Rotating Tube Bundle. Mathematics. 2021; 9(10):1153. https://doi.org/10.3390/math9101153
Chicago/Turabian StyleAlazwari, Mashhour A., and Mohammad Reza Safaei. 2021. "Non-Isothermal Hydrodynamic Characteristics of a Nanofluid in a Fin-Attached Rotating Tube Bundle" Mathematics 9, no. 10: 1153. https://doi.org/10.3390/math9101153
APA StyleAlazwari, M. A., & Safaei, M. R. (2021). Non-Isothermal Hydrodynamic Characteristics of a Nanofluid in a Fin-Attached Rotating Tube Bundle. Mathematics, 9(10), 1153. https://doi.org/10.3390/math9101153