Smooth kNN Local Linear Estimation of the Conditional Distribution Function
Abstract
:1. Introduction
1.1. Related Works
1.2. Contribution
1.3. Organization
2. Methodology
2.1. CCDF-Model and Its kNN-LLM Estimator
2.2. Functional Time Series Framework
- 1.
- If there exist and such that, for all , then, for all , , we have
- 2.
- If there exists such that , then, for all and :
3. Results: The Asymptotic Properties of the kNN-LLM Estimator of CCDF
4. Discussions and Comments
4.1. The kNN Method in Functional Statistics
4.2. On the Impact of This Contribution
4.3. Some Particular Cases
- The independent case: The independent case is widely studied in the past for some alternative models. However, this case can be treated as a particular case for this contribution. It corresponds to the case of . In this situation, the condition (2) is automatically stratified, and Theorem 1 leads straightforwardly to the following Corollary.Corollary 1.We point out that this result is also new as the kNN-LLM estimator of the CCDF in the i.i.d. case.
- The strong local dependency: The second particular case is the case when the local dependency, measured by , is of order
- The local constant method: It is well known that the Nadaraya-Watson estimator can be viewed as a particular case of the local linear approach. It can be obtained by taking . This case is so-called local constant approach and its kNN estimator is defined byThis estimator has been studied by Karra et al. [10]. They established its asymptomatic properties when the observations are independent identically distributed. While, here, we develop the dependent case. Once again, the kNN-LCM estimator’s consistency is also new in this context of nonparametric functional data analysis. It is given in the following corollary.
5. Real Data Applications
5.1. Application to Functional Time Series Prediction
5.2. Example 1: Application to Climatological Time Series Data
5.3. Example 2: Application to Air Quality Time Series Data
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Baìllo, A.; Grané, A. Local linear regression for functional predictor and scalar response. J. Multivar. Anal. 2009, 100, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Barrientos-Marin, J.; Ferraty, F.; Vieu, P. Locally Modelled Regression and Functional Data. J. Nonparametr. Stat. 2010, 22, 617–632. [Google Scholar] [CrossRef]
- Berlinet, A.; Elamine, A.; Mas, A. Local linear regression for functional data. Ann. Inst. Stat. Math. 2011, 63, 1047–1075. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Lin, Z. Asymptotic normality of locally modelled regression estimator for functional data. J. Nonparametr. Stat. 2016, 28, 116–131. [Google Scholar] [CrossRef]
- Laksaci, A.; Rachdi, M.; Rahmani, S. Spatial modelization: Local linear estimation of the conditional distribution for functional data. Spatial Stat. 2013, 6, 1–23. [Google Scholar] [CrossRef]
- Burba, F.; Ferraty, F.; Vieu, P. k-nearest neighbor method in functional non-parametric regression. J. Nonparametr. Stat. 2009, 21, 453–469. [Google Scholar] [CrossRef]
- Laloë, T. A k-nearest neighbor approach for functional regression. Stat. Probab. Lett. 2008, 78, 1189–1193. [Google Scholar] [CrossRef] [Green Version]
- Kudraszow, N.; Vieu, P. Uniform consistency of kNN regressors for functional variables. Stat. Probab. Lett. 2013, 83, 1863–1870. [Google Scholar] [CrossRef]
- Kara, L.Z.; Laksaci, A.; Rachdi, M.; Vieu, P. Data-driven kNN estimation in nonparametric functional data analysis. J. Multivar. Anal. 2017, 153, 176–188. [Google Scholar] [CrossRef]
- Chikr-Elmezouar, Z.; Almanjahie, I.M.; Laksaci, A.; Rachdi, M. FDA: Strong consistency of the kNN local linear estimation of the functional conditional density and mode. J. Nonparametr. Stat. 2019, 31, 175–195. [Google Scholar] [CrossRef]
- Bachir, A.; Almanjahie, I.M.; Attouch, M.K. The k Nearest Neighbors Estimator of the M-Regression in Functional Statistics. CMC-Comput. Mater. Continua 2020, 65, 2049–2064. [Google Scholar] [CrossRef]
- Laksaci, A.; Ould-Said, E.; Rachdi, M. Uniform consistency in number of neighbors of the kNN estimator of the conditional quantile model. Metrika 2021, 1–17. [Google Scholar] [CrossRef]
- Rachdi, M.; Laksaci, A.; Kaid, Z.; Benchiha, A.; Al-Awadhi, F.A. k-nearest neighbors local linear regression for functional and missing data at random. Stat. Neerl. 2021, 75, 42–65. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Alahmari, W.M.; Laksaci, A.; Rachdi, M. Computational aspects of the kNN local linear smoothing for some conditional models in high dimensional statistics. Commun. Stat. Simul. Comput. 2021. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Elmezouar, Z.C.; Laksaci, A.; Rachdi, M. kNN local linear estimation of the conditional cumulative distribution function: Dependent functional data case. Comptes Rendus Math. 2018, 356, 1036–1039. [Google Scholar] [CrossRef]
- Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis. Theory and Practice; Springer Series in Statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Yao, Q.; Tong, H. On initial-condition sensitivity and prediction in nonlinear stochastic systems. Bull. Int. Stat. Inst. 1995, 50, 395–412. [Google Scholar]
- DeGooijer, J.G.; Gannoun, A. Nonparametric conditional predictive regions for time series. Comput. Stat. Data Anal. 2000, 33, 259–275. [Google Scholar] [CrossRef]
kNN-LLM Estimator | CKM Estimator | |
---|---|---|
Average of the length of the SCMI | 1.23 | 2.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almanjahie, I.M.; Elmezouar, Z.C.; Laksaci, A.; Rachdi, M. Smooth kNN Local Linear Estimation of the Conditional Distribution Function. Mathematics 2021, 9, 1102. https://doi.org/10.3390/math9101102
Almanjahie IM, Elmezouar ZC, Laksaci A, Rachdi M. Smooth kNN Local Linear Estimation of the Conditional Distribution Function. Mathematics. 2021; 9(10):1102. https://doi.org/10.3390/math9101102
Chicago/Turabian StyleAlmanjahie, Ibrahim M., Zouaoui Chikr Elmezouar, Ali Laksaci, and Mustapha Rachdi. 2021. "Smooth kNN Local Linear Estimation of the Conditional Distribution Function" Mathematics 9, no. 10: 1102. https://doi.org/10.3390/math9101102
APA StyleAlmanjahie, I. M., Elmezouar, Z. C., Laksaci, A., & Rachdi, M. (2021). Smooth kNN Local Linear Estimation of the Conditional Distribution Function. Mathematics, 9(10), 1102. https://doi.org/10.3390/math9101102