A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays
Abstract
1. Introduction
2. Oscillation Criteria for Equation (1)
3. Examples
3.1. Example
3.2. Example
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erbe, L.H.; Kong, Q.; Zhang, B.G. Oscillation Theory for Functional Differential Equations; Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics; Mathematics and its Applications; Kluwer Academic Publishers Group Dordrecht: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Hale, J.K. Theory of Functional Differential Equations, 2nd ed.; Applied Mathematical Sciences; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Jaroš, J.; Stavroulakis, I.P. Oscillation tests for delay equations. Rocky Mt. J. Math. 1999, 29, 197–207. [Google Scholar] [CrossRef]
- Kon, M.; Sficas, Y.G.; Stavroulakis, I.P. Oscillation criteria for delay equations. Proc. Am. Math. Soc. 2000, 128, 2989–2997. [Google Scholar] [CrossRef]
- Kopladatze, R.G.; Chanturija, T.A. On the oscillatory and monotonic solutions of first order differential equations with deviating arguments. Differentsial’nye Uravneniya 1982, 18, 1463–1465. [Google Scholar]
- Sficas, Y.G.; Stavroulakis, I.P. Oscillation criteria for first-order delay equations. Bull. Lond. Math. Soc. 2003, 35, 239–246. [Google Scholar] [CrossRef]
- Stavroulakis, I.P.; Zhunussova, Z.K.; Ixanov, S.S.; Rababh, B.S. Optimal oscillation conditions for a delay differential equation. Appl. Math. Inf. Sci. 2019, 13, 417–425. [Google Scholar] [CrossRef]
- Ladas, G.; Stavroulakis, I.P. Oscillations caused by several retarded and advanced arguments. J. Differ. Equ. 1982, 44, 134–152. [Google Scholar] [CrossRef]
- Arino, O.; Gyori, I.; Jawhari, A. Oscillation criteria in delay equations. J. Differ. Equ. 1984, 53, 115–123. [Google Scholar] [CrossRef][Green Version]
- Li, B. Oscillations of first order delay differential equations. Proc. Am. Math. Soc. 1996, 124, 3729–3737. [Google Scholar] [CrossRef]
- Hunt, B.R.; Yorke, J.A. When all solutions of x′ = ∑qi (t) x (t − Ti(t)) oscillate. J. Differ. Equ. 1984, 53, 139–145. [Google Scholar] [CrossRef][Green Version]
- Fukagai, N.; Kusano, T. Oscillation theory of first order functional differential equations with deviating arguments. Ann. Mat. Pura Appl. 1984, 136, 95–117. [Google Scholar] [CrossRef]
- Grammatikopoulos, M.K.; Kopladatze, R.G.; Stavroulakis, I.P. On the oscillation of solutions of first order differential equations with retarded arguments. Georgian Math. J. 2003, 10, 63–76. [Google Scholar] [CrossRef]
- Ladas, G. Sharp conditions for oscillations caused by delay. Appl. Anal. 1979, 9, 93–98. [Google Scholar] [CrossRef]
- Ladas, G.; Lakshmikantham, V.; Papadakis, J.S. Oscillations of Higher-Order Retarded Differential Equations Generated by Retarded Arguments, Delay and Functional Differential Equations and Their Applications; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Infante, G.; Kopladatze, R.; Stavroulakis, I.P. Oscillation criteria for differential equations with several retarded arguments. Funkcial. Ekvac. 2015, 58, 347–364. [Google Scholar] [CrossRef]
- Kopladatze, R.G. Specific properties of solutions of first order differential equations with several delay arguments. J. Contemp. Math. Anal. 2015, 50, 229–235. [Google Scholar] [CrossRef]
- Braverman, E.; Chatzarakis, G.E.; Stavroulakis, I.P. Iterative oscillation tests for differential equations with several non-monotone arguments. Adv. Differ. Equ. 2016, 87, 18. [Google Scholar]
- Akca, H.; Chatzarakis, G.E.; Stavroulakis, I.P. An oscillation criterion for delay differential equations with several non-monotone arguments. Appl. Math. Lett. 2016, 59, 101–108. [Google Scholar] [CrossRef]
- Chatzarakis, G.E. Oscillations caused by several non-monotone deviating arguments. Diff. Equ. Appl. 2017, 9, 285–310. [Google Scholar] [CrossRef]
- Attia, E.R.; Benekas, V.; El-Morshedy, H.A.; Stavroulakis, I.P. Oscillation of first-order linear differential equations with several non-monotone delays. Open Math. 2018, 16, 83–94. [Google Scholar] [CrossRef]
- Bereketoglu, H.; Karakoc, F.; Oztepe, G.S.; Stavroulakis, I.P. Oscillations of first-order differential equations with several non-monotone retarded arguments. Georgian Math. J. 2019, 1, 26. [Google Scholar] [CrossRef]
- Moremedi, G.M.; Jafari, H.; Stavroulakis, I.P. Oscillation criteria for differential equations with several non-monotone deviating arguments. J. Comput. Anal. Appl. 2020, 28, 136–151. [Google Scholar]
- Pituk, M. Oscillation of a linear delay differential equation with slowly vaying coefficient. Appl. Math. Lett. 2017, 73, 29–36. [Google Scholar] [CrossRef]
- Garab, A.; Pituk, M.; Stavroulakis, I.P. A sharp oscillation criterion for linear delay differential equations. Appl. Math. Lett. 2019, 93, 58–65. [Google Scholar] [CrossRef]
- Garab, A. A sharp oscillation criterion for a linear differential equation with variable delay. Symmetry 2019, 11, 1332. [Google Scholar] [CrossRef]
- Garab, A.; Stavroulakis, I.P. Oscillation criteria for first order linear delay differential equations with several variable delays. Appl. Math. Lett. 2020, 106, 106366. [Google Scholar] [CrossRef]
- Moremedi, G.M.; Stavroulakis, I.P. A survey on the oscillation of differential equations with several non-monotone arguments. Appl. Math. Inf. Sci. 2018, 12, 1047–1054. [Google Scholar] [CrossRef]
- Myshkis, A.D. Linear homogeneous differential equations of first order with deviating arguments. Uspehi Matem. Nauk (N.S.) 1950, 5, 160–162. [Google Scholar]
- Tamer Senel, M. Oscillation theorems for second-order neutral dynamic equation on time scales. Appl. Math. Inf. Sci. 2013, 7, 2189–2193. [Google Scholar] [CrossRef][Green Version]
- Tunc, Q. On the qualitative analyses of integro-differential equations with constant time lag. Appl. Math. Inf. Sci. 2020, 14, 57–63. [Google Scholar]
- Wang, Z.C.; Stavroulakis, I.P.; Qian, X.Z. A survey on the oscillation of solutions of first order linear differential equations with deviating arguments. Appl. Math. E-Notes 2002, 2, 171–191. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Aty, M.; Kavgaci, M.E.; Stavroulakis, I.P.; Zidan, N. A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays. Mathematics 2020, 8, 1492. https://doi.org/10.3390/math8091492
Abdel-Aty M, Kavgaci ME, Stavroulakis IP, Zidan N. A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays. Mathematics. 2020; 8(9):1492. https://doi.org/10.3390/math8091492
Chicago/Turabian StyleAbdel-Aty, Mahmoud, Musa E. Kavgaci, Ioannis P. Stavroulakis, and Nour Zidan. 2020. "A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays" Mathematics 8, no. 9: 1492. https://doi.org/10.3390/math8091492
APA StyleAbdel-Aty, M., Kavgaci, M. E., Stavroulakis, I. P., & Zidan, N. (2020). A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays. Mathematics, 8(9), 1492. https://doi.org/10.3390/math8091492