Cauchy Problem for a Linear System of Ordinary Differential Equations of the Fractional Order
Abstract
1. Introduction
2. Statement of the Problem and the Solvability Theorem
3. Preliminaries
4. Properties of the Mittag–Leffler Function of a Matrix Argument
5. Green’s Formula for the Operator
6. Proof of Theorem 1
7. Conclusions
Funding
Conflicts of Interest
References
- Dzrbashyan, M.M.; Nersesyan, A.B. Fractional derivatives and the Cauchy problem for fractional differential equations. Izv. Acad. Sci. Arm. SSR Mat. 1968, 3, 3–28. [Google Scholar]
- Nakhushev, A.M. Fractional Calculus and Its Application; Fizmatlit: Moscow, Russia, 2003. [Google Scholar]
- Barrett, J.H. Differential Equations of Non-Integer Order. Can. J. Math. 1954, 6, 529–541. [Google Scholar] [CrossRef]
- Veber, V.K. The structure of general solution of the system y(α) = Ay,0 < α ≤ 1. Trudy Kirgiz. Gos. Univ. Ser. Mat. Nauk 1976, 11, 26–32. [Google Scholar]
- Imanaliev, M.I.; Veber, V.K. On a generalization of a function of Mittag-Leffler type and its application. In Issledovaniya Po Integro-Differentsial’nym Uravneniyam v Kirgizii; Ilim: Frunze, Russia, 1980; Volume 13, pp. 49–59. [Google Scholar]
- Veber, V.K. Asymptotic behavior of solutions of a linear system of differential equations of fractional order. In Issledovaniya Po Integro-Differentsial’nym Uravneniyam v Kirgizii; Ilim: Frunze, Russia, 1983; Volume 16, pp. 119–125. [Google Scholar]
- Veber, V.K. On the general theory of linear systems with fractional derivatives. In Issledovaniya Po Integro-Differentsial’nym Uravneniyam v Kirgizii; Ilim: Frunze, Russia, 1985; Volume 18, pp. 301–305. [Google Scholar]
- Veber, V.K. Linear equations with fractional derivatives and constant coefficients in spaces of generalized functions. In Issledovaniya Po Integro-Differentsial’nym Uravneniyam v Kirgizii; Ilim: Frunze, Russia, 1985; Volume 18, pp. 306–312. [Google Scholar]
- Chikriy, A.A.; Matichin, I.I. On an analogue of the Cauchy formula for linear systems of any fractional order. Rep. Nation. Ac. Sci. Ukr. 2007, 1, 53–55. [Google Scholar]
- Chikriy, A.A.; Matichin, I.I. Presentation of Solutions of Linear Systems with Fractional Derivatives in the Sense of Riemann-Liouville, Caputo, and Miller-Ross. J. Autom. Inf. Sci. 2008, 40, 1–11. [Google Scholar]
- Matychyn, I.; Onyshchenko, V. Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal. 2018, 21, 134–150. [Google Scholar] [CrossRef]
- Matychyn, I.; Onyshchenko, V. Matrix Mittag-Leffler function in fractional systems and its computation. Bull. Pol. Acad. Tech. 2018, 66, 495–500. [Google Scholar]
- Mamchuev, M.O. Boundary value problem for a system of multidimensional differential equations of fractional order. Vest. Samara State Univ. Nat. Sci. Ser. 2008, 8/2, 164–175. [Google Scholar]
- Mamchuev, M.O. Boundary value problem for a multidimensional system of equations with Riemann—Liouville fractional derivatives. Siberian Electron. Math. Rep. 2019, 16, 732–747. [Google Scholar]
- Mamchuev, M.O. Boundary Value Problems for Equations and Systems of Equations with the Partial Derivatives of Fractional Order; Publishing house KBSC of RAS: Nalchik, Russia, 2013. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academtic Press: New York, NY, USA, 1999. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den fundamental Satz in der Theorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Povstenko, Y. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers; Birkhäuser: New York, NY, USA, 2015. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamchuev, M. Cauchy Problem for a Linear System of Ordinary Differential Equations of the Fractional Order. Mathematics 2020, 8, 1475. https://doi.org/10.3390/math8091475
Mamchuev M. Cauchy Problem for a Linear System of Ordinary Differential Equations of the Fractional Order. Mathematics. 2020; 8(9):1475. https://doi.org/10.3390/math8091475
Chicago/Turabian StyleMamchuev, Murat. 2020. "Cauchy Problem for a Linear System of Ordinary Differential Equations of the Fractional Order" Mathematics 8, no. 9: 1475. https://doi.org/10.3390/math8091475
APA StyleMamchuev, M. (2020). Cauchy Problem for a Linear System of Ordinary Differential Equations of the Fractional Order. Mathematics, 8(9), 1475. https://doi.org/10.3390/math8091475

