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Abstract: We investigate the initial problem for a linear system of ordinary differential equations
with constant coefficients and with the Dzhrbashyan–Nersesyan fractional differentiation operator.
The existence and uniqueness theorems of the solution of the boundary value problem under the
study are proved. The solution is constructed explicitly in terms of the Mittag–Leffler function of the
matrix argument. The Dzhrbashyan–Nersesyan operator is a generalization of the Riemann–Liouville,
Caputo and Miller–Ross fractional differentiation operators. The obtained results as particular cases
contain the results related to the study of initial problems for the systems of ordinary differential
equations with Riemann–Liouville, Caputo and Miller–Ross derivatives and the investigated initial
problem that generalizes them.

Keywords: fractional derivatives; Dzhrbashyan–Nersesyan fractional differentiation operator; systems
of ordinary differential equations of fractional order; initial problem; conditions for unique solvability

1. Introduction

Consider the system of ordinary differential equations

Lu(x) ≡ D{α0,α1,...,αm}
0x u(x)− Au(x) = f (x), (1)

where D{α0,α1,...,αm}
0x is the Dzhrbashyan–Nersesyan fractional differentiation operator of the order

α =
m
∑

i=0
αi − 1 > 0 [1], αi ∈ (0, 1] (i = 0, m); f (x) = || f1(x), f2(x), ..., fn(x)|| and u(x) =

||u1(x), u2(x), ..., un(x)|| are respectively given and unknown n-vectors and A is a given constant
n× n matrix.

The Dzhrbashyan–Nersesyan fractional differentiation operator D{γ0,γ1,...,γm}
st associated with

the sequence {γ0, γ1, ..., γm}, of order γ =
m
∑

i=0
γi − 1 > 0, γi ∈ (0, 1], (i = 0, m) was determined

by the ratio [1]
D{γ0,γ1,...,γm}

st v(t) = Dγm−1
st Dγm−1

st ...Dγ1
st Dγ0

st v(t),

D{γ0}
st v(t) = Dγ0−1

st v(t),

where Dν
st is the Riemann–Liouville fractional integro-differentiation operator of order ν. The operator

Dν
st for ν < 0 is defined as follows ([2], p. 9):

Dν
stv(t) =

sgn(t− s)
Γ(−ν)

t∫
s

v(ξ)dξ

|t− ξ|ν+1 ,
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where Γ(z) is the Euler gamma function. For ν ≥ 0 the operator Dν
st can be determined using the

recursive relation
Dν

stv(t) = sgn(t− s)
d
dt

Dν−1
st v(t).

In 1954, J.H. Barrett [3] investigated the initial problem for the equation

Dα
axy(x) + λy(x) = h(x),

lim
x→a

Dα−i
ax y(x) = Ki, i = 1, 2, ..., n, n− 1 < Re(α) < n, n ∈ N.

In 1968, M.M. Dzhrbashyan and A.B. Nersesyan [1] introduced the fractional differentiation
operator D{γ0,γ1,...,γm}

0t and investigated the Cauchy problem for the Equation (1) for n = 1.
Systems of linear ordinary equations of fractional order were first investigated in the works of

V.K. Veber [4–8] and M.I. Imanaliev and V.K. Veber [5]. In 1976, V.K. Veber [4] provided the solution of
the Cauchy problem for the system of equations

Dα
0xy(x) = Ay(x), 0 < α ≤ 2

with constant matrix A in terms of the Mittag–Leffler function of the matrix argument. The asymptotic
behavior as x → ∞ of various solutions of this system (including the fundamental matrix) was studied
in [5,6]. Later, V.K. Veber considered the Cauchy problem for the inhomogeneous system

Dα
0xy(x) = A(x)y(x) + f (x), n− 1 < α ≤ n, n = 1, 2, ...

with continuous matrix function A(x) for x ≥ 0 [7], and in [8] he constructed a fundamental solution of
this system with a constant matrix A in terms of the Mittag–Leffler function of a matrix argument. There
are also examples of some applications that lead to systems of equations with fractional derivatives in
the paper [8].

A.A. Chikriy and I.I. Matychyn in [9,10] obtained solutions of Cauchy problems for the systems
of equations of the form (1), with Riemann–Liouville, Caputo and Miller–Ross derivatives using the
Laplace transform.

In the works [11,12] I. Matychyn and V. Onyshchenko investigated the solutions of the initial
problems for systems of equations with fractional Riemann–Liouville and Caputo derivatives
analytically and numerically using the Mittag–Leffler matrix function.

Note that [13,14] investigated boundary value problems for multidimensional systems of
partial differential equations of fractional order. In [15] attention was drawn to the fact that in
the one-dimensional case these results coincide with the results of [4].

In this paper, we investigate the initial problem for the system (1). We prove some properties of
the Mittag–Leffler matrix function, obtain a general representation of the solutions to the system (1)
and prove the theorem of the unique solvability of the Cauchy problem for this system.

2. Statement of the Problem and the Solvability Theorem

Problem 1. Find a solution u(x) of the system (1) in the interval (0, l), with the conditions

lim
x→0

D{α0,α1,...,αk}
0x u(x) = uk

0, 0 ≤ k ≤ m− 1, (2)

where uk
0 = ||uk

1, uk
2, ..., uk

n|| given real constant n-vectors.

A solution u(x) of the system (1) such that D{α0,α1,...,αm}
0x u(x) ∈ C(0, l), D{α0,α1,...,αk}

0x u(x) ∈
C1(0, l) ∪ C[0, l] (k = 0, m− 1) is called a regular solution of the system (1) in the interval (0, l).
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Theorem 1. Let α0 + αm > 1, function f (x) ∈ C(0, l) can be presented as f (x) = Dαm−1
0x f0(x), where

f0(x) ∈ L(0, l). Then there exists a unique regular in the interval (0, l) solution of Problem 1. Solution can be
represented as

u(x) =
m

∑
i=1

D{αm ,αm−1,...,αm+1−i}
0x G(x)um−i

0 +

x∫
0

G(x− t) f (t)dt, (3)

where G(x) = xα−1Eα,α (Axα) .

3. Preliminaries

The formula
x∫

0

h(t)Dν
0tg(t)dt =

x∫
0

g(t)Dν
xth(t)dt, ν < 0 (4)

is known as the formula of fractional integration by parts ([2], p. 9).
The following formula

Dν
0x

x∫
0

h(x− t)g(t)dt =
x∫

0

h(x− t)Dν
0tg(t)dt+

+ h(x) lim
t→0

Dν−1
0t g(t), 0 < ν < 1 (5)

holds ([16], p. 99).
The following formula of fractional integro-differentiation of power function

Dν
ax
|x− a|µ−1

Γ(µ)
=
|x− a|µ−ν−1

Γ(µ− ν)
(6)

is valid for µ > 0 if ν ∈ R, and for µ ∈ R if ν ∈ N.
In 1903, Mittag–Leffler introduced the function [17] Eα(z)

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, (α ∈ C; Re(α) > 0), (7)

which is now known as the Mittag–Leffler function.
In 1905, A. Wiman [18] generalized this function with the two-parameter Mittag–Leffler function

Eα,β(z) (also sometimes called the Wiman function)

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, (α, β ∈ C; Re(α) > 0, Re(β) > 0).

The following properties of this function are valid:

Eα,β(z) =
1

Γ(β)
+ zEα,β+α(z), (8)

Dµ
0xxβ−1Eα,β(λxα) = xβ−µ−1Eα,β−µ(λxα), (β > 0, µ ∈ R). (9)

In 1971, an even more general function Eγ
α,β(z) was introduced by T.R. Prabhakar [19]

Eγ
α,β(z) =

∞

∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, (α, β, γ ∈ C; Re(α) > 0, Re(β) > 0, Re(γ) > 0),



Mathematics 2020, 8, 1475 4 of 11

where (γ)k =
Γ(γ+k)

Γ(γ) is the Pohhammer symbol. This function is known as the Prabhakar function.
The following equalities hold [19–21]:

E1
α,β(z) = Eα,β(z), (10)

Eγ
α,β(z) = Eγ−1

α,β (z) + zEγ
α,β+α(z), (Re(α) > 0, β > 0, γ ∈ C), (11)

Dµ
0xxβ−1Eγ

α,β(λxα) = xβ−µ−1Eα,β−µ(λxα), (β > 0, µ ∈ R), (12)

lim
z→0

Eγ
α,β(z) =

1
Γ(β)

. (13)

In 1976, V.K. Veber [4] introduced the Mittag–Leffler function of the matrix argument (see also [11]).
Note that in the paper [4] the function Eγ

α,β(z) with natural values of the parameter γ ∈ N naturally
comes into sight.

Here we give a definition of the Mittag–Leffler function of a matrix argument and then examine
some of its properties.

Let A be a square matrix and H a matrix reducing the matrix A to Jordan matrix i.e.,

A = HJH−1 = H
[

Jr1(λ1), Jr2(λ2), ..., Jrp(λp)
]
H−1,

where J(λ) = diag[J1(λ1), ..., Jp(λp)] is a quasi-diagonal matrix with blocks of the form

Jk ≡ Jk(λk) =

∥∥∥∥∥∥∥∥∥∥
λk 1 . . . 0

λk . . . 0

0
. . .

...
λk

∥∥∥∥∥∥∥∥∥∥
, k = 1, ..., p,

λ1, ..., λp are the eigenvalues of the matrix A, Jk(λk) are square matrices of order rk + 1,
p
∑

k=1
rk + p = n.

Then we have

Eα,β(Az) = HEα,β(Jz)H−1 = Hdiag
[
Eα,β[J1(λ1)z], ..., Eα,β[Jp(λp)]

]
H−1, (14)

where

Eα,β[Jk(λ)z] =

∥∥∥∥∥∥∥∥∥∥
e0 e1 . . . erk−1

e0 . . . erk−2

0
. . .

...
e0

∥∥∥∥∥∥∥∥∥∥
,

en ≡ eα,β
n (λ, z) = zn

∞

∑
k=0

(k + n)!
k!n!

λkzk

Γ(α(k + n) + β)
= znEn+1

α,αn+β(λz).

It’s obvious that
e0 ≡ eα,β

0 (λ, z) = Eα,β(λz).

4. Properties of the Mittag–Leffler Function of a Matrix Argument

1. The following equality holds:

Eα,β(Az) =
1

Γ(β)
I + AzEα,β+α(Az), (β > 0, µ ∈ R). (15)
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Indeed, by the relation (8), we obtain

eα,β
0 (λ, z) = Eα,β(λz) =

1
Γ(β)

+ λzEα,β+α(λz) =
1

Γ(β)
+ λzeα,β+α

0 (λ, z).

For n 6= 0, taking into account the relation (11), we have

eα,β
n (λ, z) = znEn+1

α,αn+β(λz) = znEn
α,αn+β(λz) + λzn+1En+1

α,αn+β+α(λz) =

= zeα,β+α
n (λ, z) + λzeα,β+α

n+1 (λ, z).

From the last equalities we obtain∥∥∥∥∥∥∥∥∥∥
e0 e1 . . . erk−1

e0 . . . erk−2

0
. . .

...
e0

∥∥∥∥∥∥∥∥∥∥
=

1
Γ(β)

I + z

∥∥∥∥∥∥∥∥∥∥
λē0 ē1 + λē1 . . . ērk−1 + λērk−2

λē0 . . . ērk−2 + λērk−2

0
. . .

...
λē0

∥∥∥∥∥∥∥∥∥∥
=

=
1

Γ(β)
I + z

∥∥∥∥∥∥∥∥∥∥
λk 1 . . . 0

λk . . . 0

0
. . .

...
λk

∥∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥∥
ē0 ē1 . . . ērk−1

ē0 . . . ērk−2

0
. . .

...
ē0

∥∥∥∥∥∥∥∥∥∥
,

where ēn ≡ eα,β+α
n (λ, z) = znEn+1

α,αn+α+β(λz). Thus,

Eα,β[Jrk (λk)z] =
1

Γ(β)
I + Jrk (λk)zEα,β+α[Jrk (λk)z].

Hence, by virtue of (14), the equality (15) follows.
2. For the matrix function an analogue of the formula (9) of fractional integro-differentiation

is valid
Dµ

0xxβ−1Eα,β(Axα) = xβ−µ−1Eα,β−µ(Axα), (β > 0, µ ∈ R). (16)

Indeed, by virtue of the equality (12) we have

Dµ
0xxβ−1Eα,β[Jrk (λk)z] = Dµ

0xxβ−1

∥∥∥∥∥∥∥∥∥∥
e0 e1 . . . erk−1

e0 . . . erk−2

0
. . .

...
e0

∥∥∥∥∥∥∥∥∥∥
=

= xβ−µ−1

∥∥∥∥∥∥∥∥∥∥
ẽ0 ẽ1 . . . ẽrk−1

ẽ0 . . . ẽrk−2

0
. . .

...
ẽ0

∥∥∥∥∥∥∥∥∥∥
= xβ−µ−1Eα,β−µ[Jrk (λk)z],

where ẽn ≡ eα,β−µ
n (λ, z) = znEn+1

α,αn+β−µ(λz). Taking into account (14) we get (16).
3. From (15) and (16) it follows

(Dα
0x − A) xβ−1Eα,β(Axα) =

xβ−α−1

Γ(β− α)
I. (17)

4. Let us act on the function xβ−1Eα,β(Axα) by the Dzhrbashyan–Nersesyan operator.
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We denote µj =
j

∑
i=0

γi. Then, by virtue of formula (16), for β− µj ≥ 0 we get the following equality

D
{γ0,γ1,...,γj}
0x xβ−1Eα,β(Axα) = xβ−µj Eα,β−µj+1(Axα). (18)

In particular for β− µj = 0 we have

D
{γ0,γ1,...,γj}
0x xβ−1Eα,β(Axα) = Eα,1(Axα). (19)

By using the formula (15) from (18) we obtain

D
{γ0,γ1,...,γj}
0x xβ−1Eα,β(Axα) =

xβ−µj

Γ(β− µj + 1)
I + Axβ+α−µj Eα,β+α−µj+1(Axα)

for β− µj ≥ 0.
From the last equality for j = m and γi = αi (i = 0, m), we get

(
D{α0,...,αm}

0x − A
)

xβ−1Eα,β(Axα) =
xβ−α−1

Γ(β− α)
I, β ≥ µm = α + 1, (20)

and for j = m and γi = αm−i (i = 0, m), we get(
D{αm ,...,α0}

0x − A
)

xαEα,α+1(Axα) = I. (21)

5. By virtue of relation (13) we obtain

lim
z→0

eα,β
n (λ, z) =

{
0, n > 0,

1
Γ(β)

, n = 0.

From the last formula and (14) we get

lim
x→0

Eα,β(Axα) =
1

Γ(β)
I,

and

lim
x→0

xβ−1Eα,β(Axα) =

{
0, β > 1,
I, β = 1.

(22)

5. Green’s Formula for the Operator L

Lemma 1. Let f (x) ∈ L(0, l), then every regular solution to Problem 1 can be represented by formula (3).

Proof. Let the function V(x, t) be such that D{αm ,αm−1,...,αk}
xt V(x, t) ∈ C1(0, l) ∪ C[0, l] (k = 1, m)

and D{αm ,αm−1,...,α0}
xt V(x, t) ∈ C(0, l) ∪ L(0, l) for any fixed x ∈ [0, l]. Using the definitions of

the Dzhrbashyan–Nersesyan and Riemann–Liouville operators, the integration by parts formula
and the formula (4), we transform the following integral
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x∫
0

V(x, t)D{α0,α1,...,αm}
0t u(t)dt =

x∫
0

V(x, t)Dαm−1
0t

d
dt

D{α0,α1,...,αm−1}
0t u(t)dt =

=

x∫
0

Dαm−1
xt V(x, t) · d

dt
D{α0,α1,...,αm−1}

0t u(t)dt = S1(x)−
x∫

0

d
dt

Dαm−1
xt V(x, t) · D{α0,α1,...,αm−1}

0t u(t)dt =

= S1(x) +
x∫

0

Dαm
xt V(x, t) · Dαm−1−1

0t
d
dt

D{α0,α1,...,αm−2}
0t u(t)dt =

= S1(x) +
x∫

0

Dαm−1−1
xt Dαm

xt V(x, t) · d
dt

D{α0,α1,...,αm−2}
0t u(t)dt =

= S1(x) +
x∫

0

D{αm ,αm−1}
xt V(x, t) · d

dt
D{α0,α1,...,αm−2}

0t u(t)dt,

where
S1(x) = D{αm}

xt V(x, t) · D{α0,α1,...,αm−1}
0t u(t)

∣∣t=x
t=0 .

Continuing similarly, we obtain

x∫
0

V(x, t)D{α0,α1,...,αm}
0t u(t)dt =

k

∑
i=1

D{αm ,αm−1,...,αm+1−i}
xt V(x, t) · D{α0,α1,...,αm−i}

0t u(t)
∣∣t=x
t=0+

+

x∫
0

D{αm ,αm−1,...,αm−k}
xt V(x, t) · d

dt
D{α0,α1,...,αm−k−1}

0t u(t)dt = ... =

=
m

∑
i=1

D{αm ,αm−1,...,αm+1−i}
xt V(x, t) · D{α0,α1,...,αm−i}

0t u(t)
∣∣t=x
t=0 +

x∫
0

D{αm ,αm−1,...,α0}
xt V(x, t) · u(t)dt.

Thus, the formula

x∫
0

[
V(x, t)D{α0,α1,...,αm}

0t u(t)− D{αm ,αm−1,...,α0}
xt V(x, t) · u(t)

]
dt =

=
m

∑
i=1

D{αm ,αm−1,...,αm+1−i}
xt V(x, t) · D{α0,α1,...,αm−i}

0t u(t)
∣∣t=x
t=0

holds.
Let the function V(x, t) be a solution of the equation

L∗V(x, t) ≡ D{αm ,αm−1,...,α0}
xt V(x, t)−V(x, t)A = I, (23)

and satisfy the following conditions

lim
t→x

D{αm ,αm−1,...,αm+1−i}
xt V(x, t) = 0, 1 ≤ i ≤ m. (24)

From the formulas (21) and (22) and

Dγ
xtv(x− t) = Dγ

0yv(y)
∣∣
y=x−t (25)
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it follows that the function
V(x, t) = (x− t)αEα,α+1(A(x− t)α)

is the solution of the problem (23), (24).
From (1) and (23), it follows that

V(x, t)Lu(t)− L∗V(x, t) · u(t) = V(x, t) f (t)− u(t). (26)

After integrating the equality (26) we obtain

m

∑
i=1

D{αm ,αm−1,...,αm+1−i}
xt V(x, t) · D{α0,α1,...,αm−i}

0t u(t)
∣∣t=x
t=0 =

x∫
0

V(x, t) f (t)dt−
x∫

0

u(t)dt. (27)

Using (4) and (24) from the equality (27) we get

x∫
0

u(t)dt =
x∫

0

V(x, t) f (t)dt +
m

∑
i=1

D{αm ,αm−1,...,αm+1−i}
xt V(x, t)

∣∣
t=0um−i

0 . (28)

Differentiating (28) and taking into account the equality V(x, x) = 0 we obtain

u(x) =
x∫

0

G(x, t) f (t)dt +
m−1

∑
j=0

D
{αm ,αm−1,...,αj+1}
xt G(x, t)

∣∣
t=0uj

0, (29)

where G(x, t) = Vx(x, t) = G(x− t),

G(x) = xα−1Eα,α (Axα) .

Applying to (29) the formula

lim
t→0

Dγ
xtv(x− t) = Dγ

0xv(x),

that follows from (25), we get the equality (3).

6. Proof of Theorem 1

Proof. Let us prove that the function (3) is the solution of Problem 1. We denote the last term in right
hand side of (3) as u f (x) and uC(x) = u(x)− u f (x).

By virtue of (18) we get

D{αm ,...,αk}
0x G(x) = xα−νk Eα,α−νk+1(Axα) = xµk−1−1Eα,µk−1(Axα), (30)

where µk =
k
∑

i=0
αi, νk =

m
∑

i=k
αi.

Using the following equalities

α− µk − νs + 1 =


αs+1 + ... + αk−1, s < k− 1,
0, s = k− 1,
−(αk + ... + αs), s > k− 1,
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the formulas (15), (18) and (30) we obtain

D{α0,...,αs}
0x D{αm ,...,αk}

0x G(x) =


xαs+1+...+αk−1 Eα,αs+1+...+αk−1+1(Axα), s < k− 1,
Eα,1(Axα), s = k− 1,
Axµk−1+νs+1−1Eα,µk−1+νs+1(Axα), s > k− 1.

(31)

From (31), (22) and the inequality α0 + αm > 1 it follows that

lim
x→0

D{α0,...,αs}
0x D{αm ,...,αk}

0x G(x) =


0, s < k− 1,
I, s = k− 1,
0, s > k− 1.

(32)

Equality (32) gives the relations

lim
x→0

D{αm ,...,αk}
0x uC(x) = uk

0, k = 0, m− 1. (33)

For s = m from (21) and (31) we get(
D{α0,...,αm}

0x − A
)

D{αm ,...,αk}
0x G(x) = 0. (34)

Thus, we have to show that the last term in (3) is a solution to Problem 1 with homogeneous conditions.
By virtue of the condition f (x) = Dαm−1

0x f0(x), f0(x) ∈ L(0, l) and formulas (4) and (16) we can
conclude

u f (x) =
x∫

0

G(x− t)Dαm−1
0x f0(t)dt =

x∫
0

G0(x− t) f0(t)dt,

where
G0(x) = Dαm−1

0x G(x) = xµm−1−1Eα,µm−1(Axα).

The last equality yields

D{α0}
0x u f (x) =

x∫
0

Dα0−1
xt G0(x− t) · f0(t)dt.

Using relation (18) we get

D{α0,...,αk}
0x G0(x) = xµm−1−µk Eα,µm−1−µk+1(Axα). (35)

By virtue of (5), (16) and (22) we have

Dα0
0xu f (x) =

d
dx

D{α0}
0x u f (x) =

x∫
0

Dα0
xt G0(x− t) · f0(t)dt+

+
(

lim
t→x

Dα0−1
0x G0(x− t)

)
f0(x) =

x∫
0

Dα0
xt G0(x− t) · f0(t)dt.

Continuing in a similar way we obtain the following equalities

D{α0,...,αk}
0x u f (x) =

x∫
0

D{α0,...,αk}
xt G0(x− t) f0(t)dt, (36)
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and
d

dx
D{α0,...,αk}

0x u f (x) =
x∫

0

d
dx

D{α0,...,αk}
0x G0(x− t) f0(t)dt+

+
(

lim
t→x

D{α0,...,αk}
xt G0(x− t)

)
f0(x) =

x∫
0

d
dx

D{α0,...,αk}
0x G0(x− t) f0(t)dt.

For k = m− 1 from (36) we get

D{α0,...,αm−1}
0x u f (x) =

x∫
0

Eα,1(A(x− t)α) f0(t)dt. (37)

From the relation (37) using (15) we get

d
dx

D{α0,...,αm−1}
0x u f (x) =

d
dx

x∫
0

(x− t)αEα,α+1(A(x− t)α) f0(t)dt =

= lim
t→x

Eα,1(A(x− t)α) f0(t) +
x∫

0

(x− t)α−1Eα,α(A(x− t)α) f0(t)dt =

= f0(x) + A
x∫

0

G(x− t) f0(t)dt.

From the last relation, it follows that

D{α0,...,αm}
0x u f (x) = D{αm}

0x
d

dx
D{α0,...,αm−1}

0x u f (x) =

= Dαm−1
0x

(
f0(x) + A

x∫
0

(x− t)α−1Eα,α(A(x− t)α) f0(t)dt
)
=

= f (x) + A
x∫

0

G(x− t) f (t)dt = f (x) + Au f (x). (38)

Equalities (35) and (36) lead to the relation

lim
x→0

D{α0,...,αk}
0x u f (x) = 0, 0 ≤ k ≤ m− 1. (39)

The relations (33), (34), (38) and (39) mean that the function (3) is the solution to Problem 1. The
uniqueness of the solution to Problem 1 follows from Lemma 1.

7. Conclusions

The article investigates the initial problem for a linear system of ordinary differential equations
with the Djrbashyan–Nersesyan fractional differentiation operator with constant coefficients. To solve
the problem under the study, the Green’s function method is implemented, an integral representation
of the solution is obtained, the properties of the matrix Mittag-Leffler function (autotransformation
formula, fractional integro-differentiation formulas, etc.) are investigated. The results obtained can be
used to study local and nonlocal boundary value problems for system (1).
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