# A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction and Motivation

**Our contribution and paper outline**: Our framework extends the previous work on districting from the political science, applied mathematics, and operational research communities (see [25,26,27,28]), in several directions. First, and to the best of our knowledge, our approach is the first one to include demographic fairness criteria in the systematic design of districts. Second, it optimizes the five criteria simultaneously by constructing the so-called Pareto frontier; therefore, it provides a pool of efficient solutions to the decision-makers. This feature is crucial, since it helps decision-makers to make more informed decisions. Third, we implemented the proposed framework and tested the performance of a recent electoral law reform in Chile and the recent suggestion of the president of Chile to further change the electoral system. In both cases, the comparison between the results of the framework and the implemented and suggested changes shed some light on the interests and gerrymandering issues from each proposal, enabled us to audit the performance and criteria behind the decisions-makers that propel such changes. The results also show that our tool can design electoral systems that considerably improve the current system, both in classical measures of fairness as well in the newly introduced ones. The results that were associated with the suggestion of the Chilean president were published on the main online news portal in Chile on 16th June 2019 [29]. Furthermore, following this publication, a more complete report was delivered to governmental authorities as input for redrawing the current electoral system as part of the constitutional reform project.

## 2. Literature Review

#### 2.1. Malapportionment

#### 2.2. Political Districting: An Optimization Perspective

## 3. The Multi-Criteria Pen for FAIR Districting

**Phase I**: formulate and solve a MILP model that minimizes the total malapportionment of the system by optimally grouping territorial units (i.e., municipalities) and assigning the number of representatives to these groups. Following Chilean regulations, we ensure that electoral districts comply with the regional boundaries (i.e., a district only contains municipalities of a given territory). In this phase, we do not enforce contiguity or compactness and aim to find a fair distribution of districts to regions, and representatives to districts.**Phase II**: the second phase is only required when a region contains two or more districts.- Step 1: the solution from Phase I is repaired to obtain a solution that satisfies connectivity constraints. The resulting design corresponds to a feasible design for the electoral system.
- Step 2: a pool of efficient solutions, i.e., alternative districting plans, is sought by exploring the set of feasible solutions using a multi-objective optimization approach.

**Notation and preliminaries**: Let $V=\{1,\dots ,i,\dots ,n\}$ be the set of elementary territorial units (the municipalities in our case study), so that ${p}_{i}\in \mathbb{N}$ corresponds to the population or a measure of the population of the territorial unit $i\in V$, e.g., ${p}_{i}$ could correspond to the electoral roll of that unit (we will use this definition), and let $P={\sum}_{i\in V}{p}_{i}$. Likewise, let $({\alpha}_{i},{\beta}_{i})$ be the Cartesian coordinates of the geographical centroid of territorial unit $i\in V$; and let $\mathbf{d}$: $V\times V\to {\mathbb{R}}_{>0}$ be the distance function, so that ${d}_{ij}$, $i,j\in V{\mid}_{i\ne j}$, correspond to the distance between unit i and j. The proposed method considers the number of districts and the number of seats as input for the PDP, as these values are usually obtained through political discussions. Let $\lambda $ be the desired number of districts, and let $\sigma $ be the total number of seats. Complementary, let ${\sigma}^{-}$ and ${\sigma}^{+}$ be the minimum number and maximum number of seats to be assigned to any district, respectively.

#### 3.1. The Criteria of Democratic and Demographic Fairness

**Democratic fairness criteria**: For any given solution, the malapportionment of each district, say the district rooted at unit j, is given by

**Demographic fairness criteria**: One assumes that districts are territorially compact, i.e., to be geographically smooth. There are several alternatives to enforce such a behavior within districting plans. One approach is to seek territorial aggregations that are centered with respect to their geographical centroid (see [26,53,78,79,80] and the references therein).

#### 3.2. First Phase: An MILP Model for Minimum Malapportionment

#### 3.3. Second Phase: An Algorithm to Explore Pareto-Efficient Districting Plans

**Definition**

**1.**

## 4. Results and Discussion: The Chilean Case

#### 4.1. Brief Description of the Recent Electoral Reform in the Chilean Parliament

#### 4.2. Computing ${\mathit{MAL}}^{*}({\mathbf{y}}^{*},{\mathbf{x}}^{*},{\mathbf{e}}^{*})$ (First-Phase): Results and Discussion

#### 4.3. Exploring the Efficient Solutions (Second-Phase): Results and Discussion

#### 4.4. A New Redistricting Plan

## 5. Conclusions and Future Work

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

**Table A1.**Summary of the malapportionment levels obtained for the districting design of a Chamber of Deputies considering 120 seats.

Region District (j) | MILP | # Seats | % Electoral Roll | % District Seats | MAL${}_{\mathit{j}}$ | (1) | (2) |
---|---|---|---|---|---|---|---|

Arica y Parinacota | 1 | 2 | 1.29 | 1.67 | 0.37 | 0.19 | |

Tarapacá | 2 | 2 | 1.70 | 1.67 | −0.03 | 0.02 | |

Antofagasta | 3 | 3 | 3.14 | 2.50 | −0.64 | 0.32 | |

Atacama | 4 | 2 | 1.63 | 1.67 | 0.04 | 0.02 | |

Coquimbo | 5 | 5 | 4.03 | 4.17 | 0.14 | 0.07 | |

Valparaíso | 6 | 2 | 1.63 | 1.67 | 0.04 | 0.05 | 0.04 |

7 | 8 | 6.63 | 6.67 | 0.04 | |||

8 | 3 | 2.49 | 2.50 | 0.01 | |||

Metropolitana | 9 | 8 | 6.68 | 6.67 | −0.01 | 0.10 | 0.07 |

10 | 8 | 6.74 | 6.67 | −0.07 | |||

11 | 8 | 6.69 | 6.67 | −0.02 | |||

12 | 7 | 5.88 | 5.83 | −0.05 | |||

13 | 8 | 6.70 | 6.67 | −0.03 | |||

14 | 8 | 6.66 | 6.67 | 0.01 | |||

O’Higgins | 15 | 2 | 1.77 | 1.67 | −0.11 | 0.09 | 0.11 |

16 | 4 | 3.39 | 3.33 | −0.06 | |||

Maule | 17 | 3 | 2.50 | 2.50 | 0.00 | 0.05 | 0.10 |

18 | 4 | 3.43 | 3.33 | −0.10 | |||

Bío-Bío | 19 | 3 | 2.88 | 2.50 | −0.38 | 0.25 | 0.38 |

20 | 2 | 1.61 | 1.67 | 0.06 | |||

21 | 7 | 5.80 | 5.83 | 0.03 | |||

22 | 2 | 1.65 | 1.67 | 0.02 | |||

Araucanía | 23 | 3 | 2.52 | 2.50 | −0.02 | 0.05 | 0.08 |

24 | 4 | 3.41 | 3.33 | −0.08 | |||

Los Ríos | 25 | 3 | 2.36 | 1.67 | −0.69 | 0.35 | |

Los Lagos | 26 | 6 | 4.93 | 5.00 | 0.07 | 0.04 | |

Aysén | 27 | 2 | 0.66 | 1.67 | 1.01 | 0.51 | |

Magallanes | 28 | 2 | 1.11 | 1.67 | 0.56 | 0.28 | |

120 | 100 | 100 | 2.39 |

## References

- Gallagher, M.; Mitchell, P. The Politics of Electoral Systems; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Monroe, B. Disproportionality and malapportionment: Measuring electoral inequity. Elect. Stud.
**1994**, 13, 132–149. [Google Scholar] [CrossRef] - Snyder, R.; Samuels, D. Legislative Malapportionment in Latin America: Historical and Comparative Perspectives. In Federalism and Democracy in Latin America; Gibson, E., Ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2004; pp. 131–172. [Google Scholar]
- Taagepera, R.; Shugart, M. Seats and Votes: The Effects and Determinants of Electoral Systems; Yale University: New Haven, CT, USA, 1989. [Google Scholar]
- Samuels, D.; Snyder, R. The value of a vote: Malapportionment in comparative perspective. Br. J. Political Sci.
**2001**, 31, 651–671. [Google Scholar] [CrossRef] [Green Version] - Dahl, R. Democracy and Its Critics; Yale University Press: New Haven, CT, USA, 1989. [Google Scholar]
- Reynoso, D. Las consecuencias políticas de la sobre-representación distrital. Política Gobierno
**2002**, IX, 325–359. [Google Scholar] - Giugăl, A.; Johnston, R.; Chiru, M.; Ciobanu, I.; Gavriș, A. Gerrymandering and Malapportionment, Romanian Style: The 2008 Electoral System. East Eur. Politics Soc.
**2017**, 31, 683–703. [Google Scholar] [CrossRef] - Wong, S. Gerrymandering in Electoral Autocracies: Evidence from Hong Kong. Br. J. Political Sci.
**2019**, 49, 579–610. [Google Scholar] [CrossRef] - Vickrey, W. On the prevention of gerrymandering. Political Sci. Q.
**1961**, 76, 105–110. [Google Scholar] [CrossRef] - Helbig, R.; Orr, P.; Roediger, R. Political redistricting by computer. Commun. ACM
**1972**, 15, 735–741. [Google Scholar] [CrossRef] - Lee, F. Representation and public policy: The consequences of senate apportionment for the geographic distribution of federal funds. J. Politics
**1998**, 60, 34–62. [Google Scholar] [CrossRef] - Lee, F. Senate representation and coalition building in distributive politics. Am. Political Sci. Rev.
**2000**, 94, 59–72. [Google Scholar] [CrossRef] - Ahmed, A. Democracy and the Politics of Electoral System Choice: Engineering Electoral Dominance; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Farrell, D. Electoral Systems: A Comparative Introduction; Macmillan International Higher Education: London, UK, 2011. [Google Scholar]
- Renwick, A. The Politics of Electoral Reform: Changing the Rules of Democracy; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bowler, S.; Donovan, T.; Karp, J. Why politicians like electoral institutions: Self-interest, values, or ideology? J. Politics
**2006**, 68, 434–446. [Google Scholar] [CrossRef] [Green Version] - Colomer, J. It’s parties that choose electoral systems (or, Duverger’s laws upside down). Political Stud.
**2005**, 53, 1–21. [Google Scholar] [CrossRef] [Green Version] - Buchanan, A. Political legitimacy and democracy. Ethics
**2002**, 112, 689–719. [Google Scholar] [CrossRef] [Green Version] - Fuchs, D.; Klingemann, H. Globalization, Populism and Legitimacy in Contemporary Democracy. In Democracy under Threat; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–21. [Google Scholar]
- Parkinson, J. Legitimacy problems in deliberative democracy. Political Stud.
**2003**, 51, 180–196. [Google Scholar] [CrossRef] - Widmaier, U. Tendencies toward an Erosion of Legitimacy. In Comparing Pluralist Democracies; Routledge: Abingdon, UK, 2019; pp. 143–167. [Google Scholar]
- Jones, D.; Walsh, R. How do voters matter? Evidence from US congressional redistricting. J. Public Econ.
**2018**, 158, 25–47. [Google Scholar] [CrossRef] [Green Version] - Stephanopoulos, N. Our electoral exceptionalism. Univ. Chic. Law Rev.
**2013**, 80, 769–858. [Google Scholar] - Chambers, C.; Miller, A. Measuring legislative boundaries. Math. Soc. Sci.
**2013**, 66, 268–275. [Google Scholar] [CrossRef] - Fryer, R.; Holden, R. Measuring the compactness of political districting plans. J. Law Econ.
**2011**, 54, 493–535. [Google Scholar] [CrossRef] [Green Version] - Hess, S.; Weaver, J.; Siegfeldt, H.; Whelan, J.; Zitlau, P. Nonpartisan political redistricting by computer. Oper. Res.
**1965**, 13, 998–1006. [Google Scholar] [CrossRef] - Weaver, J.; Hess, S. A Procedure for Nonpartisan Districting: Development of Computer Techiques. Yale LJ
**1963**, 73, 288. [Google Scholar] [CrossRef] - El Mercurio, Online Version. Nuevo diseño de Distritos y Regreso al Binominal en Regiones: La fórmula Matemática Para Reducir el Número de Parlamentarios. Published 16 June 2019. Available online: https://www.emol.com/noticias/Nacional/2019/06/16/951370/Nuevo-diseno-de-distritos-y-regreso-al-binominal-en-regiones-La-formula-matematica-para-reducir-el-numero-de-parlamentarios.html (accessed on 25 June 2019).
- Cox, G. Making Votes Count: Strategic Coordination in the World’s Electoral Systems; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Ong, K.; Kasuya, Y.; Mori, K. Malapportionment and democracy: A curvilinear relationship. Elect. Stud.
**2017**, 49, 118–127. [Google Scholar] [CrossRef] - Altman, M.; McDonald, M. BARD: Better Automated ReDistricting. J. Stat. Softw. Forthcom.
**2011**, 42, 1–28. [Google Scholar] [CrossRef] - Benoit, K. Electoral laws as political consequences: Explaining the origins and change of electoral institutions. Ann. Rev. Political Sci.
**2007**, 10, 363–390. [Google Scholar] [CrossRef] [Green Version] - Boix, C. Setting the rules of the game: The choice of electoral systems in advanced democracies. Am. Political Sci. Rev.
**1999**, 93, 609–624. [Google Scholar] [CrossRef] [Green Version] - Grofman, B.; Koetzle, W.; Brunell, T. An integrated perspective on the three potential sources of partisan bias: Malapportionment, turnout differences, and the geographic distribution of party vote shares. Elect. Stud.
**1997**, 16, 457–470. [Google Scholar] [CrossRef] - Sauger, N.; Grofman, B. Partisan bias and redistricting in France. Elect. Stud.
**2016**, 44, 388–396. [Google Scholar] [CrossRef] - Schedler, A. The nested game of democratization by elections. Int. Political Sci. Rev.
**2002**, 23, 103–122. [Google Scholar] [CrossRef] - Carey, J. Malapportionment and ideological bias in Chilean electoral districts. Lat. Am. Politics Soc.
**2016**, 58, 123–133. [Google Scholar] [CrossRef] - Gamboa, R.; Morales, M. Chile’s 2015 Electoral Reform: Changing the Rules of the Game. Lat. Am. Politics Soc.
**2016**, 58, 126–144. [Google Scholar] [CrossRef] - Bhavnani, R. The effects of malapportionment on cabinet inclusion: Subnational evidence from India. Br. J. Political Sci.
**2018**, 48, 69–89. [Google Scholar] [CrossRef] - Çarkoğlu, A.; Aksen, D. Partisan and apportionment bias in creating a predominant party system. Political Geogr.
**2019**, 69, 43–53. [Google Scholar] [CrossRef] - Hiroi, T. Paradox of Redistribution: Legislative Overrepresentation and Regional Development in Brazil. Publius J. Fed.
**2019**, 49, 642–670. [Google Scholar] [CrossRef] - Hiroi, T.; Neiva, P. Malapportionment and geographical bases of electoral support in the Brazilian Senate. J. Politics Lat. Am.
**2013**, 5, 127–150. [Google Scholar] [CrossRef] [Green Version] - Gibson, E.; Calvo, E. Federalism and low-maintenance constituencies: Territorial dimensions of economic reform in Argentina. Stud. Comp. Int. Dev.
**2000**, 35, 32–55. [Google Scholar] [CrossRef] - Cho, Y.; Frederickson, H. Measuring the Effects of Reapportionment in the American States; National Municipal League: New York, NY, USA, 1976. [Google Scholar]
- Cowan, S. Periodic Discordance Between Vote Equality and Representational Equality in the United States. Sociol. Sci.
**2015**, 2, 442–453. [Google Scholar] [CrossRef] [Green Version] - Erikson, R. Malapportionment, gerrymandering, and party fortunes in congressional elections. Am. Political Sci. Rev.
**1972**, 66, 1234–1245. [Google Scholar] [CrossRef] - Zagarri, R. The Politics of Size: Representation in the United States, 1776–1850; Cornell University Press: Ithaca, NY, USA, 1987. [Google Scholar]
- Boone, C.; Wahman, M. Rural bias in African electoral systems: Legacies of unequal representation in African democracies. Elect. Stud.
**2015**, 40, 335–346. [Google Scholar] [CrossRef] [Green Version] - Garfinkel, R.; Nemhauser, G. Optimal Political Districting by Implicit Enumeration Techniques. Manag. Sci.
**1970**, 16, B495–B508. [Google Scholar] [CrossRef] - Ricca, F.; Simeone, B. Local search algorithms for political districting. Eur. J. Oper. Res.
**2008**, 189, 1409–1426. [Google Scholar] [CrossRef] - Hojati, M. Optimal political districting. Comput. Oper. Res.
**1996**, 23, 1147–1161. [Google Scholar] [CrossRef] - Horn, D.; Hampton, C.; Vandenberg, A. Practical application of district compactness. Political Geogr.
**1993**, 12, 103–120. [Google Scholar] [CrossRef] - Mehrotra, A.; Johnson, E.; Nemhauser, G. An optimization based heuristic for political districting. Manag. Sci.
**1998**, 44, 1100–1114. [Google Scholar] [CrossRef] - Gopalan, R.; Kimbrough, S.; Murphy, F.; Quintus, N. The Philadelphia districting contest: Designing territories for city council based upon the 2010 census. Interfaces
**2013**, 43, 477–489. [Google Scholar] [CrossRef] [Green Version] - George, J.; Lamar, B.; Wallace, C. Political district determination using large-scale network optimization. Socio-Econ. Plan. Sci.
**1997**, 31, 11–28. [Google Scholar] [CrossRef] - Ricca, F.; Scozzari, A.; Simeone, B. Weighted Voronoi region algorithms for political districting. Math. Comput. Model.
**2008**, 48, 1468–1477. [Google Scholar] [CrossRef] [Green Version] - Bozkaya, B.; Erkut, E.; Haight, D.; Laporte, G. Designing new electoral districts for the city of edmonton. Interfaces
**2011**, 41, 534–547. [Google Scholar] [CrossRef] - Chou, C.; Li, S. Spin systems and political districting problem. J. Magn. Magn. Mater.
**2007**, 310, 2889–2891. [Google Scholar] [CrossRef] - Cirincione, C.; Darling, T.; O’Rourke, T. Assessing South Carolina’s 1990s congressional districting. Political Geogr.
**2000**, 19, 189–211. [Google Scholar] [CrossRef] - Rincón-García, E.; Gutiérrez-Andrade, M.; de-los Cobos-Silva, S.; Mora-Gutiérrez, R.; Ponsich, A.; Lara-Velázquez, P. A system for political districting in the State of Mexico. Lect. Notes Comput. Sci.
**2015**, 9413, 248–259. [Google Scholar] - Alawadhi, S.; Mahalla, R. The political districting of Kuwait: Heuristic approaches. Kuwait J. Sci.
**2015**, 42, 160–188. [Google Scholar] - Bozkaya, B.; Erkut, E.; Laporte, G. A tabu search heuristic and adaptive memory procedure for political districting. Eur. J. Oper. Res.
**2003**, 144, 12–26. [Google Scholar] [CrossRef] - Fragoso, R.; Rego, C.; Bushenkov, V. Clustering of territorial areas: A multi-criteria districting problem. J. Quant. Econ.
**2016**, 14, 179–198. [Google Scholar] [CrossRef] - Kong, Y.; Zhu, Y.; Wang, Y. A center-based modeling approach to solve the districting problem. Int. J. Geogr. Inf. Sci.
**2018**, 33, 1–17. [Google Scholar] [CrossRef] - Ricca, F.; Scozzari, A.; Simeone, B. Political Districting: From classical models to recent approaches. Ann. Oper. Res.
**2013**, 204, 271–299. [Google Scholar] [CrossRef] - Bodin, L. A districting experiment with a clustering algorithm. Ann. N. Y. Acad. Sci.
**1973**, 219, 209–214. [Google Scholar] [CrossRef] [PubMed] - King, D.; Jacobson, S.; Sewell, E.; Cho, W. Geo-graphs: An efficient model for enforcing contiguity and hole constraints in planar graph partitioning. Oper. Res.
**2012**, 60, 1213–1228. [Google Scholar] [CrossRef] - Chou, C.; Li, S. Taming the Gerrymander-Statistical physics approach to Political Districting Problem. Phys. A Stat. Mech. Appl.
**2006**, 369, 799–808. [Google Scholar] [CrossRef] [Green Version] - Rincón-García, E.; Gutiérrez-Andrade, M.; de-los Cobos-Silva, S.; Mora-Gutiérrez, R.; Ponsich, A.; Lara-Velázquez, P. A comparative study of population-based algorithms for a political districting problem. Kybernetes
**2017**, 46, 172–190. [Google Scholar] [CrossRef] - Shirabe, T. Districting modeling with exact contiguity constraints. Environ. Plan. B Plan. Des.
**2009**, 36, 1053–1066. [Google Scholar] [CrossRef] - Bruno, G.; Genovese, A.; Piccolo, C. Territorial amalgamation decisions in local government: Models and a case study from Italy. Socio-Econ. Plan. Sci.
**2017**, 57, 61–72. [Google Scholar] [CrossRef] [Green Version] - Kalcsics, J.; Nickel, S.; Schröder, M. Towards a unified territorial design approach—Applications, algorithms and GIS integration. TOP
**2005**, 13, 1–56. [Google Scholar] [CrossRef] - Arrington, T. Redistricting in the U.S.: A review of scholarship and plan for future research. Forum
**2010**, 8, 1–49. [Google Scholar] [CrossRef] - Tasnadi, A. The political districting problem: A survey. Soc. Econ.
**2011**, 33, 543–554. [Google Scholar] [CrossRef] [Green Version] - Williams, J. Political redistricting: A review. Pap. Reg. Sci.
**1995**, 74, 13–40. [Google Scholar] [CrossRef] - Loosemore, J.; Hanby, V. The theoretical limits of maximum distortion: Some analytic expressions for electoral systems. Br. J. Political Sci.
**1971**, 1, 467–477. [Google Scholar] [CrossRef] - Altman, M. Modeling the effect of mandatory district compactness on partisan gerrymanders. Political Geogr.
**1998**, 17, 989–1012. [Google Scholar] [CrossRef] - Polsby, D.D.; Popper, R.D. The third criterion: Compactness as a procedural safeguard against partisan gerrymandering. Yale L. Pol’y Rev.
**1991**, 9, 301. [Google Scholar] [CrossRef] - Young, H. Measuring the compactness of legislative districts. Legis. Stud. Q.
**1988**, 13, 105–115. [Google Scholar] [CrossRef] - Dubois-Lacoste, J.; López-Ibáñez, M.; Stützle, T. Anytime pareto local search. Eur. J. Oper. Res.
**2015**, 243, 369–385. [Google Scholar] [CrossRef] [Green Version] - Hopcroft, J.; Tarjan, R. Algorithm 447: Efficient algorithms for graph manipulation. Commun. ACM
**1973**, 16, 372–378. [Google Scholar] [CrossRef] - Censor, Y. Pareto optimality in multiobjective problems. Appl. Math. Optim.
**1977**, 4, 41–59. [Google Scholar] [CrossRef] - Blot, A.; Kessaci, M.; Jourdan, L. Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation. J. Heuristics
**2018**, 24, 853–877. [Google Scholar] [CrossRef] [Green Version] - Gandibleux, X.; Sevaux, M.; Sörensen, K.; Tkindt, V. (Eds.) Metaheuristics for Multiobjective Optimisation; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 2004; Volume 535. [Google Scholar]
- Talbi, E. Hybrid metaheuristics for multi-objective optimization. J. Algorithms Comput. Technol.
**2015**, 9, 41–63. [Google Scholar] [CrossRef] [Green Version] - Belussi, F. In search of a useful theory of spatial clustering. In Clusters and Regional Development; Routledge: Abingdon, UK, 2006; pp. 69–89. [Google Scholar]
- Gibler, D.; Tir, J. Territorial peace and democratic clustering. J. Politics
**2014**, 76, 27–40. [Google Scholar] [CrossRef] [Green Version] - Laghi, A.; Luppi, G.; Mazzocchetti, A. Detecting homogeneus areas in a sub-regional demographic analisys. In Atti della XLIII Riunione Scientifica della Società Italiana di Statistica; Università di Torino: Torino, Italy, 2006; pp. 14–16. [Google Scholar]
- Sobolewski, M.; Markowska, M. Hierarchical clustering methods with territorial integrity criterion. Acta Univ. Lodz. Folia Oeconomica
**2017**, 4, 99–109. [Google Scholar] [CrossRef] [Green Version] - Kropat, E.; Weber, G.; Alparslan-Gök, S.; Özmen, A. Inverse problems in complex multi-modal regulatory networks based on uncertain clustered data. In Modeling, Dynamics, Optimization and Bioeconomics I; Springer Proceedings in Mathematics & Statistics; Pinto, A., Zilberman, D., Eds.; Springer: Cham, Switzerland, 2014; Volume 73, pp. 437–451. [Google Scholar]
- Volkovich, Z.; Toledano-Kitai, D.; Weber, G. Self-learning K-means clustering: A global optimization approach. J. Glob. Optim.
**2013**, 56, 219–232. [Google Scholar] [CrossRef]

**Figure 2.**Districting designs for the Metropolitana region: Pursuing the best performance for each criterion.

**Figure 3.**Districting designs for the Metropolitana region: Opposite performances of compactness for ${\mathrm{MAL}}^{*}=0.36$.

**Table 1.**Comparison of the main characteristics of the electoral system valid from 1990 until 2015 and the reformed electoral system established in 2015 (see [39]). M stands for the number of representatives under election for the district.

1989–2015 System | Current System | ||
---|---|---|---|

Senate | # of districts | 19 | 15 |

# of seats | 38 | 50 | |

# of seats/district | 2 | from 2 to 5 | |

Allocation method | D’Hondt | D’Hondt | |

Chamber of Deputies | # of districts | 60 | 28 |

# of seats | 120 | 155 | |

# of seats/district | 2 | from 3 to 8 | |

Allocation method | D’Hondt | D’Hondt | |

Both cameras | Electoral Alliances | Allowed | Allowed |

Gender quotas | No | · Temporary until 2029 | |

· At least 40% of candidates must be of the each sex | |||

· Additional expenses reimbursement for elected women | |||

Candidates by list | M | M+1 |

Region | New District (j) | Previous Districts | # Seats | % Electoral Roll | % District Seats | MAL${}_{\mathit{j}}$ | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|---|---|---|---|---|---|

Arica | 1 | 1 | 3 | 1.29 | 1.94 | 0.64 | 0.32 | ||||

Tarapacá | 2 | 2 | 3 | 1.70 | 1.94 | 0.24 | 0.12 | ||||

Antofagasta | 3 | 3, 4 | 5 | 3.14 | 3.23 | 0.09 | 0.05 | ||||

Atacama | 4 | 5, 6 | 5 | 1.63 | 3.23 | 1.60 | 0.80 | ||||

Coquimbo | 5 | 7, 8, 9 | 7 | 4.03 | 4.52 | 0.49 | 0.25 | ||||

Valparaíso | 6 | 10, 11, 12 | 8 | 5.29 | 5.16 | −0.13 | 0.22 | 0.31 | 1.36 × 10${}^{12}$ | 1.66 × 10${}^{5}$ | 1.57 × 10${}^{5}$ |

7 | 13, 14, 15 | 8 | 5.47 | 5.16 | −0.31 | ||||||

Metropolitana | 8 | 16, 20 | 8 | 7.02 | 5.16 | −1.86 | 4.55 | 1.86 | 1.54 × 10${}^{10}$ | 2.58 × 10${}^{6}$ | 9.69 × 10${}^{4}$ |

9 | 17, 18, 19 | 7 | 5.82 | 4.52 | −1.30 | ||||||

10 | 21, 22, 25 | 8 | 6.64 | 5.16 | −1.48 | ||||||

11 | 23, 24 | 6 | 4.79 | 3.87 | −0.92 | ||||||

12 | 26, 29 | 7 | 6.0 | 4.52 | −1.48 | ||||||

13 | 27, 28 | 5 | 4.16 | 3.23 | −0.93 | ||||||

14 | 30, 31 | 6 | 4.99 | 3.87 | −1.12 | ||||||

O’Higgins | 15 | 32, 33 | 5 | 2.96 | 3.23 | 0.27 | 0.33 | 0.38 | 3.21 × 10${}^{10}$ | 4.63 × 10${}^{4}$ | 4.82 × 10${}^{4}$ |

16 | 34, 35 | 4 | 2.20 | 2.58 | 0.38 | ||||||

Maule | 17 | 36, 37, 38 | 7 | 3.88 | 4.52 | 0.64 | 0.58 | 0.64 | 5.78 × 10${}^{10}$ | 9.47 × 10${}^{4}$ | 9.47 × 10${}^{4}$ |

18 | 39, 40 | 4 | 2.06 | 2.58 | 0.52 | ||||||

Bío-Bío | 19 | 41, 42 | 5 | 3.19 | 3.23 | 0.04 | 0.21 | 0.24 | 1.48 × 10${}^{11}$ | 1.00 × 10${}^{5}$ | 1.23 × 10${}^{5}$ |

20 | 43, 44, 45 | 8 | 5.40 | 5.16 | −0.24 | ||||||

21 | 46, 47 | 5 | 3.36 | 3.23 | −0.13 | ||||||

Araucanía | 22 | 48, 49 | 4 | 1.95 | 2.58 | 0.63 | 0.59 | 0.63 | 1.06 × 10${}^{11}$ | 1.82 × 10${}^{5}$ | 9.10 × 10${}^{4}$ |

23 | 50, 51, 52 | 7 | 3.98 | 4.52 | 0.54 | ||||||

Los Ríos | 24 | 53, 54 | 5 | 2.36 | 3.23 | 0.87 | 0.44 | ||||

Los Lagos | 25 | 55, 56 | 4 | 2.15 | 2.58 | 0.44 | 0.44 | 0.44 | 1.26 × 10${}^{11}$ | 1.63 × 10${}^{5}$ | 2.17 × 10${}^{5}$ |

26 | 57, 58 | 5 | 2.79 | 3.23 | 0.44 | ||||||

Aysén | 27 | 59 | 3 | 0.66 | 1.94 | 1.27 | 0.64 | ||||

Magallanes | 28 | 60 | 3 | 1.11 | 1.94 | 0.83 | 0.42 | ||||

155 | 100 | 100 | 9.96 |

Region | MILP District (j) | # Seats | % Electoral Roll | % District Seats | MAL${}_{\mathit{j}}$ | (1) | (2) |
---|---|---|---|---|---|---|---|

Arica y Parinacota | 1 | 3 | 1.29 | 1.94 | 0.64 | 0.32 | |

Tarapacá | 2 | 3 | 1.70 | 1.94 | 0.23 | 0.12 | |

Antofagasta | 3 | 4 | 3.14 | 2.58 | −0.56 | 0.28 | |

Atacama | 4 | 3 | 1.63 | 1.94 | 0.30 | 0.15 | |

Coquimbo | 5 | 6 | 4.03 | 3.87 | −0.16 | 0.08 | |

Valparaíso | 6 | 8 | 5.42 | 5.16 | −0.26 | 0.22 | 0.26 |

7 | 8 | 5.33 | 5.16 | −0.17 | |||

Metropolitana | 8 | 3 | 2.01 | 1.94 | −0.07 | 0.36 | 0.17 |

9 | 8 | 5.17 | 5.16 | −0.01 | |||

10 | 7 | 4.68 | 4.52 | −0.17 | |||

11 | 7 | 4.68 | 4.52 | −0.17 | |||

12 | 7 | 4.64 | 4.52 | −0.12 | |||

13 | 8 | 5.17 | 5.16 | −0.01 | |||

14 | 6 | 3.92 | 3.87 | −0.05 | |||

15 | 6 | 3.93 | 3.87 | −0.06 | |||

16 | 8 | 5.23 | 5.16 | −0.07 | |||

O’Higgins | 17 | 8 | 5.16 | 5.16 | 0.00 | 0.00 | |

Maule | 18 | 3 | 1.97 | 1.94 | −0.03 | 0.06 | 0.10 |

19 | 6 | 3.97 | 3.87 | −0.10 | |||

Bío-Bío | 20 | 7 | 4.52 | 4.52 | −0.01 | 0.16 | 0.24 |

21 | 7 | 4.60 | 4.52 | −0.08 | |||

22 | 4 | 2.82 | 2.58 | −0.24 | |||

Araucanía | 23 | 6 | 3.91 | 3.87 | −0.04 | 0.06 | 0.08 |

24 | 3 | 2.01 | 1.94 | −0.08 | |||

Los Ríos | 25 | 3 | 2.36 | 1.94 | −0.42 | 0.21 | |

Los Lagos | 26 | 7 | 4.93 | 4.52 | −0.42 | 0.21 | |

Aysén | 27 | 3 | 0.66 | 1.94 | 1.27 | 0.64 | |

Magallanes | 28 | 3 | 1.11 | 1.94 | 0.83 | 0.42 | |

155 | 100 | 100 | 3.29 |

**Table 4.**Current system v/s Our method: Relative differences (in %) in the performance of the five criteria.

Region | #Dist | #Seats | $\Delta \mathbf{MAL}$ | $\Delta {\mathbf{MAL}}_{{\mathit{j}}^{*}}$ | $\Delta \mathrm{D}$ | $\Delta \mathrm{G}$ | $\Delta T$ |
---|---|---|---|---|---|---|---|

Valparaíso | 2 | 16 | 0% | 29% | 68% | 94% | 354% |

Metropolitana | 9 | 60 | 92% | 94% | 75% | −54% | 80% |

Maule | 2 | 9 | 89% | 90% | 17% | 34% | 70% |

Bío-Bío | 3 | 18 | 19% | 53% | 17% | 0% | 76% |

Araucanía | 2 | 9 | 90% | 90% | 19% | 5% | 95% |

**Table 5.**Trade-offs of global democratic fairness (in %): Differences when pursuing compactness, global demographic fairness, and local demographic fairness.

Region | $\Delta min\mathbf{MAL}{\mid}_{{\mathrm{D}}^{*}}$ | $\Delta min\mathbf{MAL}{\mid}_{{\mathrm{G}}^{*}}$ | $\Delta min\mathbf{MAL}{\mid}_{{T}^{*}}$ | $\Delta min\mathbf{D}{\mid}_{{\mathbf{MAL}}^{*}}$ | $\Delta min\mathbf{G}{\mid}_{{\mathbf{MAL}}^{*}}$ | $\Delta max\mathbf{T}{\mid}_{{\mathbf{MAL}}^{*}}$ |
---|---|---|---|---|---|---|

Valparaíso | −1452% | −935% | 0% | −105% | −1481% | 0% |

Metropolitana | −4008% | −16% | −1085% | −160% | 0% | −17% |

Maule | −61% | 0% | 0% | −2% | 0% | 0% |

Bío-Bío | −1058% | −208% | 0% | −4% | 0% | 0% |

Araucanía | −699% | 0% | 0% | 0% | 0% | 0% |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Álvarez-Miranda, E.; Campos-Valdés, C.; Quiroga, M.M.; Moreno-Faguett, M.; Pereira, J.
A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter. *Mathematics* **2020**, *8*, 1404.
https://doi.org/10.3390/math8091404

**AMA Style**

Álvarez-Miranda E, Campos-Valdés C, Quiroga MM, Moreno-Faguett M, Pereira J.
A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter. *Mathematics*. 2020; 8(9):1404.
https://doi.org/10.3390/math8091404

**Chicago/Turabian Style**

Álvarez-Miranda, Eduardo, Camilo Campos-Valdés, Maurcio Morales Quiroga, Matías Moreno-Faguett, and Jordi Pereira.
2020. "A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter" *Mathematics* 8, no. 9: 1404.
https://doi.org/10.3390/math8091404