Insurance Contracts for Hedging Wind Power Uncertainty
Abstract
1. Introduction
2. The Stochastic Models
2.1. The WISMC Model of Wind Power Production
2.2. Joint Model of Electricity Price and Wind Power Production
3. The Insurance Problem
- if , he/she gets from the insurer the benefit ;
- if , no money transfer from the insurer to the WPP occurs;
- at any time during the validity period of the contract, he/she pays a fixed premium to the insurer equal to .
- money amounts are discounted with fixed discount factor v; accordingly, denotes the discount factor for s periods of time.
4. Materials and Methods
- -
- geographical coordinates: 39.5 N (latitude) and 8.75 E (longitude);
- -
- hub height of the turbine: 95 m;
- -
- rated power of the turbine: 2 MW;
- -
- cut-in wind speed: 4 m/s;
- -
- rated wind speed: 13 m/s;
- -
- cut-out wind speed: 25 m/s.
5. Results on the Insurance Problem
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IEA. Renewable Energy Market Update. 2020. Available online: https://www.iea.org/reports/renewable-energy-market-update (accessed on 15 May 2020).
- Beenstock, M. The stochastic economics of windpower. Energy Econ. 1995, 17, 27–37. [Google Scholar] [CrossRef]
- Barton, J.P.; Infield, D.G. Energy storage and its use with intermittent renewable energy. IEEE Trans. Energy Convers. 2004, 19, 441–448. [Google Scholar] [CrossRef]
- Sufyan, M.; Rahim, N.A.; Aman, M.M.; Tan, C.K.; Raihan, S.R.S. Sizing and applications of battery energy storage technologies in smart grid system: A review. J. Renew. Sustain. Energy 2019, 11, 014105. [Google Scholar] [CrossRef]
- Wang, X.; Vilathgamuwa, D.M.; Choi, S.S. Determination of battery storage capacity in energy buffer for wind farm. IEEE Trans. Energy Convers. 2008, 23, 868–878. [Google Scholar] [CrossRef]
- Pinson, P.; Papaefthymiou, G.; Klockl, B.; Verboomen, J. Dynamic sizing of energy storage for hedging wind power forecast uncertainty. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–8. [Google Scholar]
- D’Amico, G.; Petroni, F.; Sobolewski, R.A. Optimal Control of a Dispatchable Energy Source for Wind Energy Management. Stochastics Qual. Control 2019, 34, 19–34. [Google Scholar] [CrossRef]
- Hedman, K.W.; Sheblé, G.B. Comparing hedging methods for wind power: Using pumped storage hydro units vs. options purchasing. In Proceedings of the 2006 International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 11–15 June 2006; pp. 1–6. [Google Scholar]
- Xiao, Y.; Wang, X.; Wang, X.; Wu, Z. Trading wind power with barrier option. Appl. Energy 2016, 182, 232–242. [Google Scholar] [CrossRef]
- D’Amico, G.; Petroni, F.; Prattico, F. Insuring wind energy production. Phys. A Stat. Mech. Appl. 2017, 467, 542–553. [Google Scholar] [CrossRef]
- D’Amico, G.; Petroni, F.; Prattico, F. Wind speed modeled as an indexed semi-Markov process. Environmetrics 2013, 24, 367–376. [Google Scholar] [CrossRef]
- D’Amico, G.; Petroni, F.; Prattico, F. Wind speed and energy forecasting at different time scales: A nonparametric approach. Phys. A Stat. Mech. Appl. 2014, 406, 59–66. [Google Scholar] [CrossRef]
- D’Amico, G.; Petroni, F.; Prattico, F. Economic performance indicators of wind energy based on wind speed stochastic modeling. Appl. Energy 2015, 154, 290–297. [Google Scholar] [CrossRef]
- D’Amico, G.; Petroni, F.; Prattico, F. Reliability measures for indexed semi-Markov chains applied to wind energy production. Reliab. Eng. Syst. Saf. 2015, 144, 170–177. [Google Scholar] [CrossRef]
- Limnios, N.; Oprisan, G. Semi-Markov Process and Reliability. 2001. Available online: file:///C:/Users/MDPI/Downloads/bok3A978-1-4612-0161-8.pdf (accessed on 15 May 2020).
- Barbu, V.S.; Limnios, N. Semi-Markov Chains and Hidden Semi-Markov Models toward Applications: Their Use in Reliability and DNA Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 191. [Google Scholar]
- Swishchuk, A.; Hofmeister, T.; Cera, K.; Schmidt, J. General semi-Markov model for limit order books. Int. J. Theor. Appl. Financ. 2017, 20, 1750019. [Google Scholar] [CrossRef]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef]
- Mari, C. Hedging electricity price volatility using nuclear power. Appl. Energy 2014, 113, 615–621. [Google Scholar] [CrossRef]
- Casula, L.; D’Amico, G.; Masala, G.; Petroni, F. Performance estimation of a wind farm with a dependence structure between electricity price and wind speed. World Econ. 2020. [Google Scholar] [CrossRef]
- Norberg, R. A Time-Continuous Markov Chain Interest Model with Applications to Insurance. Appl. Stoch. Model. Data Anal. 1995, 11, 245–256. [Google Scholar] [CrossRef]
- Milbrodt, H. Hattendorff’s theorem for non-smooth continuous-time Markov models I: Theory. Insur. Math. Econ. 1999, 25, 181–195. [Google Scholar] [CrossRef]
- Henriksen, L.F.B.; Nielsen, J.W.; Steffensen, M.; Svensson, C. Markov chain modeling of policyholder behavior in life insurance and pension. Eur. Actuar. J. 2014, 4, 1–29. [Google Scholar] [CrossRef]
- Janssen, J. Application des processus semi-Markoviens à un probléme d’invalidité. Bulletin de l’Association Royale des Actuaries Belges 1966, 63, 35–52. [Google Scholar]
- Hoem, J.M. Inhomogeneous Semi-Markov Processes, Select Actuarial Tables, and Duration-dependence in Demography. In Population Dynamics; Elsevier: Amsterdam, The Netherlands, 1972; pp. 251–296. [Google Scholar]
- Janssen, J.; De Dominicis, R. Finite non-homogeneous semi-Markov processes: Theoretical and computational aspects. Insur. Math. Econ. 1984, 3, 157–165. [Google Scholar] [CrossRef]
- Janssen, J.; Manca, R. A realistic non-homogeneous stochastic pension fund model on scenario basis. Scand. Actuar. J. 1997, 1997, 113–137. [Google Scholar] [CrossRef]
- Stenberg, F.; Manca, R.; Silvestrov, D. Semi-Markov Reward Models for Disability Insurance. 2006. Available online: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/4468/2006_12_3-4_17.pdf (accessed on 15 May 2020).
- Stenberg, F.; Manca, R.; Silvestrov, D. An algorithmic approach to discrete time non-homogeneous backward semi-Markov reward processes with an application to disability insurance. Methodol. Comput. Appl. Probab. 2007, 9, 497–519. [Google Scholar] [CrossRef]
- D’Amico, G.; Guillen, M.; Manca, R. Full backward non-homogeneous semi-Markov processes for disability insurance models: A Catalunya real data application. Insur. Math. Econ. 2009, 45, 173–179. [Google Scholar] [CrossRef]
- Ji, M.; Hardy, M.; Li, J.S.H. A semi-Markov multiple state model for reverse mortgage terminations. Ann. Actuar. Sci. 2012, 6, 235–257. [Google Scholar] [CrossRef]
- Maegebier, A. Valuation and risk assessment of disability insurance using a discrete time trivariate Markov renewal reward process. Insur. Math. Econ. 2013, 53, 802–811. [Google Scholar] [CrossRef]
- Buchardt, K.; Møller, T.; Schmidt, K.B. Cash flows and policyholder behaviour in the semi-Markov life insurance setup. Scand. Actuar. J. 2015, 2015, 660–688. [Google Scholar] [CrossRef]
- D’Amico, G.; Petroni, F. Multivariate high-frequency financial data via semi-Markov processes. Markov Process. Relat. Fields. 2014, 20, 415–434. [Google Scholar]
- D’Amico, G.; Petroni, F. A micro-to-macro approach to returns, volumes and waiting times. arXiv 2020, arXiv:2007.06262. [Google Scholar]
- Onken, A.; Panzeri, S. Mixed Vine Copulas as Joint Models of Spike Counts and Local Field Potentials. In Advances in Neural Information Processing Systems; Mit Press: Cambridge, MA, USA, 2016; pp. 1325–1333. [Google Scholar]
- D’Amico, G.; Petroni, F. Copula based multivariate semi-Markov models with applications in high-frequency finance. Eur. J. Oper. Res. 2018, 267, 765–777. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, G.; Gismondi, F.; Petroni, F. Insurance Contracts for Hedging Wind Power Uncertainty. Mathematics 2020, 8, 1376. https://doi.org/10.3390/math8081376
D’Amico G, Gismondi F, Petroni F. Insurance Contracts for Hedging Wind Power Uncertainty. Mathematics. 2020; 8(8):1376. https://doi.org/10.3390/math8081376
Chicago/Turabian StyleD’Amico, Guglielmo, Fulvio Gismondi, and Filippo Petroni. 2020. "Insurance Contracts for Hedging Wind Power Uncertainty" Mathematics 8, no. 8: 1376. https://doi.org/10.3390/math8081376
APA StyleD’Amico, G., Gismondi, F., & Petroni, F. (2020). Insurance Contracts for Hedging Wind Power Uncertainty. Mathematics, 8(8), 1376. https://doi.org/10.3390/math8081376