Lucas Numbers Which Are Concatenations of Two Repdigits
Abstract
:1. Introduction
2. Preliminaries
3. Proof of Theorem 1
3.1. Bounding n
3.2. Reducing the Bound on n
4. Conclusions and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Mathematica Programs
- Generates a list of the first n terms in continued fraction representation:
- The denominator of the nth convergent of continued fraction:
- The function which denotes the distance from x to the nearest integer:
- The number in Lemma 2:
- The number in (16):
- The number in (20):
- The nth term of Lucas sequence :
References
- Dujella, A.; Jadrijević, B. A parametric family of quartic Thue equations. Acta Arith. 2002, 101, 159–170. [Google Scholar] [CrossRef]
- Luca, F.; Oyono, R. An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers. Proc. Jpn. Acad. Ser. A Math. Sci. 2011, 87, 45–50. [Google Scholar] [CrossRef]
- Marques, D.; Togbé, A. Fibonacci and Lucas numbers of the form 2a + 3b + 5c. Proc. Jpn. Acad. Ser. A Math. Sci. 2013, 89, 47–50. [Google Scholar] [CrossRef]
- Bitim, B.D. On the Diophantine equation Ln - Lm = 2·3a. Period. Math. Hung. 2019, 79, 210–217. [Google Scholar]
- Luca, F.; Stănică, P. Fibonacci numbers of the form pa ± pb. In Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications; Congressus Numerantium; Utilitas Mathematica Pub.: Winnipeg, MB, Canada, 2009; Volume 194, pp. 177–183. [Google Scholar]
- Qu, Y.; Zeng, J.; Cao, Y. Fibonacci and Lucas numbers of the form 2a + 3b + 5c + 7d. Symmetry 2018, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. Mathematics 2019, 7, 700. [Google Scholar] [CrossRef] [Green Version]
- Marques, D.; Togbé, A. On repdigits as product of consecutive Fibonacci numbers. Rend. Istit. Mat. Univ. Trieste 2012, 44, 393–397. [Google Scholar]
- Irmak, N.; Togbé, A. On repdigits as product of consecutive Lucas numbers. Notes Number Theory Discret. Math. 2018, 24, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Trojovský, P. Fibonacci Numbers with a Prescribed Block of Digits. Mathematics 2020, 8, 639. [Google Scholar] [CrossRef] [Green Version]
- Bravo, J.J.; Luca, F. On a conjecture about repdigits in k-generalized Fibonacci sequences. Publ. Math. Debr. 2013, 82, 623–639. [Google Scholar] [CrossRef]
- Erduvan, F.; Keskin, R.; Şiar, Z. Repdigits base b as products of two Lucas numbers. Quaest. Math. 2020. [Google Scholar] [CrossRef]
- Erduvan, F.; Keskin, R. Repdigits as products of two Fibonacci or Lucas numbers. Proc. Indian Acad. Sci. (Math. Sci.) 2020, 130, 28. [Google Scholar] [CrossRef]
- Adegbindin, C.; Luca, F.; Togbé, A. Lucas numbers as sums of two repdigits. Lith. Math. J. 2019, 59, 295–304. [Google Scholar] [CrossRef]
- Luca, F. Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 2000, 57, 243–254. [Google Scholar]
- Luca, F. Repdigits as sums of three Fibonacci numbers. Math. Commun. 2012, 17, 1–11. [Google Scholar]
- Normenyo, B.V.; Luca, F.; Togbé, A. Repdigits as Sums of Four Fibonacci or Lucas Numbers. J. Integer Seq. 2018, 21, 18.7.7. [Google Scholar]
- Alahmadi, A.; Altassan, A.; Luca, F.; Shoaib, H. Fibonacci numbers which are concatenations of two repdigits. Quaest. Math. 2019. [Google Scholar] [CrossRef]
- Rayaguru, S.G.; Panda, G.K. Balancing numbers which are concatenation of two repdigits. Bol. Soc. Mat. Mex. 2020. [Google Scholar] [CrossRef]
- Ddamulira, M. Padovan numbers that are concatenations of two repdigits. arXiv 2020, arXiv:2003.10705. [Google Scholar]
- Ddamulira, M. Tribonacci numbers that are concatenations of two repdigits. Camb. Open Engag. 2020. [Google Scholar] [CrossRef] [Green Version]
- Matveev, E.M. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. Izv. Math. 2000, 64, 1217–1269. [Google Scholar] [CrossRef]
- Dujella, A.; Pethö, A. A generalization of a theorem of Baker and Davenport. Q. J. Math. Oxf. Ser. 1998, 49, 291–306. [Google Scholar] [CrossRef]
- Erazo, H.S.; Gómez, C.A.; Luca, F. On Pillai’s problem with X-coordinates of Pell equations and powers of 2. J. Number Theory 2019, 203, 294–309. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zeng, J. Lucas Numbers Which Are Concatenations of Two Repdigits. Mathematics 2020, 8, 1360. https://doi.org/10.3390/math8081360
Qu Y, Zeng J. Lucas Numbers Which Are Concatenations of Two Repdigits. Mathematics. 2020; 8(8):1360. https://doi.org/10.3390/math8081360
Chicago/Turabian StyleQu, Yunyun, and Jiwen Zeng. 2020. "Lucas Numbers Which Are Concatenations of Two Repdigits" Mathematics 8, no. 8: 1360. https://doi.org/10.3390/math8081360
APA StyleQu, Y., & Zeng, J. (2020). Lucas Numbers Which Are Concatenations of Two Repdigits. Mathematics, 8(8), 1360. https://doi.org/10.3390/math8081360