Article

Lucas Numbers Which Are Concatenations of Two Repdigits

Yunyun Qu ${ }^{1,2, *}$ and Jiwen Zeng ${ }^{1}$
1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; jwzeng@xmu.edu.cn
2 School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China
* Correspondence: qucloud@163.com

Received: 21 July 2020; Accepted: 10 August 2020; Published: 13 August 2020
Abstract: In this paper, we find all Lucas numbers written in the form $\overline{c \cdots c d \cdots d}$, where $\overline{c \cdots c d \cdots d}$ is the concatenation of two repdigits in base 10 with $c, d \in\{0,1, \ldots, 9\}, c \neq d$ and $c>0$.

Keywords: Lucas numbers; concatenations of two repdigits; logarithmic height; continued fraction

1. Introduction

Linear form in logarithms has many important applications in solving Diophantine equations [1-4]. In 2002, by applying linear form in logarithms, A. Dujella and B. Jadrijević [1] showed that the solutions to quartic Thue equations $x^{4}-4 c x^{3} y+(6 c+2) x^{2} y^{2}+4 c x y^{3}+y^{4}=1$ are only $(x, y)=(\pm 1,0)$ and $(0, \pm 1)$ for an integer $c \geq 3$. Suppose that $\left\{F_{n}\right\}_{n \geq 0}$ is the Fibonacci sequence given by $F_{n+2}=F_{n+1}+F_{n}$, with initial values $F_{0}=0$ and $F_{1}=1$ and let $\left\{L_{n}\right\}_{n \geq 0}$ be the Lucas sequence defined by $L_{n+2}=L_{n+1}+L_{n}$, where $L_{0}=2$ and $L_{1}=1$. In 2011, F. Luca and R. Oyono [2] concluded that there is no solution (m, n, s) to the Diophantine equation $F_{m}^{s}+F_{m+1}^{s}=F_{n}$ for integers $m \geq 2, n \geq 1, s \geq 3$ by applying linear form in logarithms. There are many papers in the literature which solve Diophantine equations related to Fibonacci numbers and Lucas numbers [3-14]. In 2013, D. Marques and A. Togbé [3] found all solutions (n, a, b, c) to the Diophantine equation $F_{n}=2^{a}+3^{b}+5^{c}$ and $L_{n}=2^{a}+3^{b}+5^{c}$ for integers n, a, b, c with $0 \leq \max \{a, b\} \leq c$. In 2019, B. D. Bitim [4] investigated the solutions (n, m, a) to the Diophantine equation $L_{n}-L_{m}=2 \cdot 3^{a}$ for nonnegative integers n, m, a with $n>m$. Let p be a prime number and $\max \{a, b\} \geq 2$, in 2009, F. Luca and P. Stǎnicǎ [5] concluded that there are only finitely many positive integer solutions (n, p, a, b) to the Diophantine equation $F_{n}=p^{a} \pm p^{b}$.

Assume that $q \geq 2$ is an integer. A positive number $n \in \mathbb{N}$ is called a base q-repdigit if $n=c \frac{q^{t}-1}{q-1}$, for some $t \geq 1$ and $c \in\{1,2, \ldots, q-1\}$. When $q=10, n$ is simply called a repdigit. We use $\overline{B_{1} \cdots B_{t}}(q)$ to express an integer's base $-q$ representation which is the concatenation of the base $-q$ representations of positive integers B_{1}, \ldots, B_{t}. We ignore writing q if $q=10$. Then we can denote the repdigit n by $n=\underbrace{\overline{c \cdots c}}_{\text {t times }}$ and the concatenation of two repdigits in base 10 is $\underbrace{\overline{c \cdots c} \underbrace{d \cdots d}_{\text {times }}}_{\text {stimes }}$, where $c, d \in\{0,1, \ldots, 9\}, c \neq d, c>0, s \geq 1$ and $t \geq 1$. There are many papers in the literature on investigating Diophantine equations related to repdigits [8,9,11-21]. In 2000, Luca [15] proved that if $F_{n}=a \frac{10^{m}-1}{9}$ and $L_{n}=a \frac{10^{m}-1}{9}$ for some $a \in\{0,1, \ldots, 9\}$ and $m \geq 1$, then $n=0,1,2,3,4,5,6,10$ and $n=0,1,2,3,4,5$ respectively. In 2012, all repdigits in base 10 expressible as sums of three Fibonacci numbers were found in [16]. In 2018, all repdigits in base 10 which are sums of four Fibonacci or Lucas numbers were determined in [17]. In 2019, all solutions to the Diophantine equation $F_{n}=\underbrace{\overline{a \cdots a b}}_{m \text { times } l \text { times }}$ were found in [18], where $a, b \in\{0,1, \ldots, 9\}$ and $a>0$. For the research of concatenations of
two repdigits in balancing numbers, Padovan numbers and Tribonacci numbers, please refer to the literature [19-21] respectively.

In this paper, we find all Lucas numbers which are concatenations of two repdigits. More precisely, we have the following result.

Theorem 1. If

$$
\begin{equation*}
L_{n}=\underbrace{\overline{c \cdots c} c}_{\text {s times }} \underbrace{d \cdots d}_{\text {times }}, \tag{1}
\end{equation*}
$$

with $c, d \in\{0,1, \ldots, 9\}, c \neq d, c>0, s \geq 1$ and $t \geq 1$, then

$$
\left(n, L_{n}\right) \in\{(6,18),(7,29),(8,47),(9,76),(11,199),(12,322)\}
$$

2. Preliminaries

Firstly, the Binet's formula for Lucas sequence is

$$
L_{n}=\alpha^{n}+\beta^{n}, n \geq 0
$$

where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. For all positive integers n, we have the following inequality

$$
\begin{equation*}
\alpha^{n-1} \leq L_{n} \leq \alpha^{n+1} \tag{2}
\end{equation*}
$$

Secondly, we recall the definition and properties for logarithmic height of an algebraic number. Let η be an algebraic number of degree m and suppose that the minimal primitive polynomial of η is $f(X):=a_{0} \prod_{i=1}^{m}\left(X-\eta^{(i)}\right) \in \mathbb{Z}[X]$ with $a_{0}>0$. We give the logarithmic height of η by

$$
h(\eta):=\frac{1}{m}\left(\log a_{0}+\sum_{i=1}^{m} \log \max \left\{\left|\eta^{(i)}\right|, 1\right\}\right) .
$$

In this paper, for any two integers a and b, we denote the greatest common divisor of a and b by $\operatorname{gcd}(a, b)$. Specifically, $h(\eta)=\log \max \{|p|, q\}$ when $\eta=\frac{p}{q} \in \mathbb{Q}$ with $\operatorname{gcd}(p, q)=1$ and $q>0$. We have the following properties of the logarithmic height $h(\cdot)$:

$$
\begin{gathered}
h(\eta \pm \gamma) \leq h(\eta)+h(\gamma)+\log 2 \\
h\left(\eta \gamma^{ \pm 1}\right) \leq h(\eta)+h(\gamma) \\
h\left(\eta^{k}\right)=|k| h(\eta) \quad(k \in \mathbb{Z})
\end{gathered}
$$

We need the following lemma to prove our theorem.
Lemma 1. (see [22]) Let $d_{\mathbb{L}}$ be the degree of an algebraic number field \mathbb{L} over \mathbb{Q} and $\mathbb{L} \subseteq \mathbb{R}$. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{l} \in \mathbb{L}$ be non-zero elements and let b_{1}, \ldots, b_{l} be rational integers. If $\Gamma:=\gamma_{1}^{b_{1}} \cdots \gamma_{l}^{b_{l}}-1 \neq 0$, then

$$
|\Gamma| \geq \exp \left(-1.4 \cdot 30^{l+3} l^{4.5} d_{\mathbb{L}}^{2}\left(1+\log d_{\mathbb{L}}\right)(1+\log B) A_{1} \cdots A_{l}\right)
$$

where A_{j} are real numbers such that

$$
A_{j} \geq \max \left\{d_{\mathbb{L}} h\left(\gamma_{j}\right),\left|\log \gamma_{j}\right|, 0.16\right\}
$$

for $j=1, \ldots, l$ and $B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{l}\right|, 3\right\}$.
Thirdly, we need the following Lemma 2 and Lemma 3 to reduce some large upper bounds on the variables in the course of our calculations.

Lemma 2. (see [23]) Let M be a positive integer and let $\frac{p}{q}$ be a convergent of the continued fraction of the irrational number α such that $q>6 M$, and let A, B, τ be some real numbers with $A>0$ and $B>1$. Let $\epsilon:=\|\tau q\|-M\|\alpha q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. If $\epsilon>0$, then there exists no solution to the inequality

$$
0<|u \alpha-v+\tau|<A B^{-\omega}
$$

in positive integers u, v, and ω with $u \leq M$ and $w \geq \frac{\log (A q / \epsilon)}{\log B}$.
Lemma 3. (see [24]) Let τ be an irrational number, M be a positive integer and $\frac{p_{k}}{q_{k}}(k=0,1,2, \ldots)$ be all the convergents of the continued fraction $\left[a_{0}, a_{1}, \ldots\right]$ of τ. Let N be such that $q_{N}>M$. Then putting $a_{M}:=\max \left\{a_{i}: i=0,1, \ldots, N\right\}$, the inequality

$$
|m \tau-n|>\frac{1}{\left(a_{M}+2\right) m}
$$

holds for all pairs (n, m) of integers with $0<m<M$.

3. Proof of Theorem 1

3.1. Bounding n

According to (1), we get

$$
\begin{align*}
L_{n} & =\underbrace{\overline{c \cdots c} c}_{\text {stimes }} \underbrace{d \cdots d}_{\text {t times }} \\
& =\underbrace{\overline{c \cdots c}}_{\text {stimes }} \cdot 10^{t}+\underbrace{\overline{d \cdots d}}_{\text {t times }} \tag{3}\\
& =\frac{1}{9}\left(c 10^{s+t}-(c-d) 10^{t}-d\right) .
\end{align*}
$$

Suppose that $n>1000$. From inequality (2), we can get $\alpha^{n-1} \leq L_{n}<10^{s+t}$ and $10^{s+t-1} \leq L_{n} \leq \alpha^{n+1}$, which implies that

$$
\begin{equation*}
(s+t) \log 10-\log 10-\log \alpha \leq n \log \alpha<(s+t) \log 10+\log \alpha . \tag{4}
\end{equation*}
$$

Thus, we can get

$$
\begin{equation*}
4.78(s+t)-5.8<n<4.79(s+t)+1 \tag{5}
\end{equation*}
$$

From (5), we get $s+t>\frac{n-1}{4.79}>208$ and $n>s+t$. According to (3) and Binet's formulae for Lucas sequences, we get

$$
\begin{equation*}
\left|9 \alpha^{n}-c 10^{s+t}\right|=\left|-9 \beta^{n}-\left((c-d) 10^{t}+d\right)\right| \leq 9 \alpha^{-n}+9 \cdot 10^{t}+9<27 \cdot 10^{t} \tag{6}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left|\frac{9}{c} \alpha^{n} 10^{-s-t}-1\right|<\frac{27}{10^{s}} \tag{7}
\end{equation*}
$$

Let $\Gamma_{1}:=\frac{9}{c} \alpha^{n} 10^{-s-t}-1$, then $\Gamma_{1} \neq 0$. If $\Gamma_{1}=0$, then $\alpha^{n}=\frac{10^{s+t} c}{9} \in \mathbb{Q}$, thus we have $\frac{10^{s+t_{c}}}{9}=\frac{(1+\sqrt{5})^{n}}{2^{n}}=\frac{f+g \sqrt{5}}{2^{n}}$, where $f, g \in \mathbb{Z}, f>0, g>0$, this implies that $\sqrt{5}=\frac{\frac{10^{s+t_{c 2^{n}}}}{g}-f}{g} \in \mathbb{Q}$, which is impossible. According to Lemma 1, we take $l=3$, $\gamma_{1}=\frac{9}{c}, \gamma_{2}=\alpha, \gamma_{3}=10$ and $b_{1}=1, b_{2}=n, b_{3}=-s-t$. Thus, we have $\mathbb{L}=\mathbb{Q}(\alpha), d_{\mathbb{L}}=[\mathbb{L}: \mathbb{Q}]=2$. Note that $h\left(\gamma_{1}\right)=h\left(\frac{9}{c}\right) \leq \log 9, h\left(\gamma_{2}\right)=\frac{1}{2} \log \alpha, h\left(\gamma_{3}\right)=\log 10$. Thus, we can take $A_{1}=2 \log 9, A_{2}=0.5$, $A_{3}=4.8$. Note that $B=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|,\left|b_{3}\right|, 3\right\}=\max \{1, n, s+t, 3\}=n$. Hence, we get

$$
\begin{equation*}
\left|\Gamma_{1}\right|>\exp \left(-C_{1}(1+\log n)\right) \tag{8}
\end{equation*}
$$

where $C_{1}=1.025 \times 10^{13}$. Thus from (7) and (8), we can get

$$
\begin{equation*}
\operatorname{slog} 10<C_{1}(1+\log n)+\log 27 \tag{9}
\end{equation*}
$$

We rewrite Equation (3), then we get

$$
\begin{equation*}
\left|\alpha^{n}-\frac{c 10^{s}-(c-d)}{9} \cdot 10^{t}\right|=\left|\beta^{n}+\frac{d}{9}\right| \leq \alpha^{-n}+1<2 \tag{10}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left|\frac{c 10^{s}-(c-d)}{9} \cdot \alpha^{-n} \cdot 10^{t}-1\right|<\frac{2}{\alpha^{n}} \tag{11}
\end{equation*}
$$

Let $\Gamma_{2}:=\frac{c 10^{s}-(c-d)}{9} \cdot \alpha^{-n} \cdot 10^{t}-1$, then $\Gamma_{2} \neq 0$. If $\Gamma_{2}=0$, then $\alpha^{n}=\frac{c 10^{s}-(c-d)}{9} \cdot 10^{t} \in \mathbb{Q}$, which is false. According to Lemma 1, we take $l=3, \gamma_{1}=\frac{c 10^{s}-(c-d)}{9}, \gamma_{2}=\alpha, \gamma_{3}=10$ and $b_{1}=1, b_{2}=-n, b_{3}=$ t. Thus, we have $\mathbb{L}=\mathbb{Q}(\alpha), d_{\mathbb{L}}=[\mathbb{L}: \mathbb{Q}]=2$. From (9), we can get

$$
\begin{align*}
h\left(\gamma_{1}\right) & \leq h\left(c 10^{s}-(c-d)\right)+h(9) \\
& \leq 3 \log 9+s \log 10+\log 2 \tag{12}\\
& \leq C_{1}(1+\log n)+\log 27+3 \log 9+\log 2 \\
& \leq 1.03 \cdot 10^{13} \cdot(1+\log n)
\end{align*}
$$

and we have $h\left(\gamma_{2}\right)=\frac{1}{2} \log \alpha, h\left(\gamma_{3}\right)=\log 10$. Thus, we can take $A_{1}=2.06 \cdot 10^{13} \cdot(1+\log n), A_{2}=0.5$, $A_{3}=4.8$. Note that $B=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|,\left|b_{3}\right|, 3\right\}=\max \{1, n, t, 3\}=n$. Hence, we get

$$
\begin{equation*}
\left|\Gamma_{2}\right|>\exp \left(-C_{2}(1+\log n)^{2}\right) \tag{13}
\end{equation*}
$$

where $C_{2}=4.8 \times 10^{25}$. Thus from (11) and (13), we can get

$$
\begin{equation*}
n \log \alpha<C_{2}(1+\log n)^{2}+\log 2 \tag{14}
\end{equation*}
$$

this implies that $n<4.8 \times 10^{29}$. Hence we can conclude that

$$
s+t<\frac{n+5.8}{4.78}<1.01 \cdot 10^{29}
$$

To sum up, we have the lemma as follows.
Lemma 4. If (n, c, d, s, t) is a solution in non-negative integers of Equation (1), with $c, d \in\{0,1, \ldots, 9\}$, $c \neq d$ and $c>0$, then

$$
s+t<n<4.8 \cdot 10^{29}, s+t<1.01 \cdot 10^{29}
$$

3.2. Reducing the Bound on n

We use the Lemmas 2 and 3 to reduce the bound for n. Let

$$
\Lambda_{1}:=(s+t) \log 10-n \log \alpha-\log \frac{9}{c}
$$

From (7), we conclude that

$$
\begin{equation*}
\left|e^{-\Lambda_{1}}-1\right|<\frac{27}{10^{s}} \tag{15}
\end{equation*}
$$

If $s \geq 2$, then $\left|e^{-\Lambda_{1}}-1\right|<\frac{27}{10^{s}}<\frac{1}{2}$, which implies that $\frac{1}{2}<e^{-\Lambda_{1}}<\frac{3}{2}$. If $\Lambda_{1}>0$, then $0<\Lambda_{1}<e^{\Lambda_{1}}-1=e^{\Lambda_{1}}\left(1-e^{-\Lambda_{1}}\right)<\frac{54}{10^{5}}$. If $\Lambda_{1}<0$, then $0<\left|\Lambda_{1}\right|<e^{\left|\Lambda_{1}\right|}-1=e^{-\Lambda_{1}}-1<\frac{27}{10^{5}}$. In any case, it is always holds true $0<\left|\Lambda_{1}\right|<\frac{54}{10^{5}}$, which implies

$$
\begin{equation*}
0<\left|(s+t) \frac{\log 10}{\log \alpha}-n-\frac{\log \frac{9}{c}}{\log \alpha}\right|<\frac{\frac{54}{\log \alpha}}{10^{s}} \tag{16}
\end{equation*}
$$

The continued fraction of $\frac{\log 10}{\log \alpha}$ is $\left[a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right]=[4,1,3,1,1,1,6, \ldots]$, and let $\frac{p_{k}}{q_{k}}$ be its kth convergent. Note that $s+t<1.01 \cdot 10^{29}$ by Lemma 4. It is easy to see that $\frac{\log 10}{\log \alpha}$ is irrational. In fact, if $\frac{\log 10}{\log \alpha}=\frac{p}{q}(p, q \in \mathbb{Z}$ and $p>0, q>0, \operatorname{gcd}(p, q)=1)$, then $\alpha^{p}=10^{q} \in \mathbb{Q}$, which is an absurdity. For all $c \in\{1, \ldots, 8\}$, according to (16) and Lemma 2, we take $M=1.01 \cdot 10^{29}$ and $q_{60}>6 M$, hence we get the minimum value of ϵ is $0.061483 \ldots$ and $s<34$. If $c=9$, from (16), we get

$$
\begin{equation*}
0<\left|(s+t) \frac{\log 10}{\log \alpha}-n\right|<\frac{\frac{54}{\log \alpha}}{10^{s}} \tag{17}
\end{equation*}
$$

According to Lemma 3, we take $M=1.01 \cdot 10^{29}$ and $q_{60}>M$, hence we get $a_{M}:=\max \left\{a_{i}: i=0,1, \ldots, 60\right\}=106$ and we have

$$
\begin{equation*}
\left|(s+t) \frac{\log 10}{\log \alpha}-n\right|>\frac{1}{\left(a_{M}+2\right)(s+t)}>\frac{1}{108 \cdot 1.01 \cdot 10^{29}} \tag{18}
\end{equation*}
$$

Thus, from (17) and (18), we get

$$
\frac{1}{108 \cdot 1.01 \cdot 10^{29}}<\frac{\frac{54}{\log \alpha}}{10^{s}}
$$

this leads to $s<34$. So we always have $s<34$.
Let

$$
\Lambda_{2}:=t \log 10-n \log \alpha+\log \frac{c 10^{s}-(c-d)}{9}
$$

From (11) and $n>1000$, we conclude that

$$
\begin{equation*}
\left|e^{\Lambda_{2}}-1\right|<\frac{2}{\alpha^{n}}<\frac{1}{2} \tag{19}
\end{equation*}
$$

which implies that $\frac{1}{2}<e^{\Lambda_{2}}<\frac{3}{2}$. If $\Lambda_{2}>0$, then $0<\Lambda_{2}<e^{\Lambda_{2}}-1<\frac{2}{\alpha^{n}}$. If $\Lambda_{2}<0$, then $0<\left|\Lambda_{2}\right|<e^{-\Lambda_{2}}-1=e^{-\Lambda_{2}}\left(1-e^{\Lambda_{2}}\right)<\frac{4}{\alpha^{n}}$. In any case, since $0<\left|\Lambda_{2}\right|<\frac{4}{\alpha^{n}}$, thus we have

$$
\begin{equation*}
0<\left|t \frac{\log 10}{\log \alpha}-n+\frac{\log \frac{c 10^{s}-(c-d)}{9}}{\log \alpha}\right|<\frac{\frac{4}{\log \alpha}}{\alpha^{n}} \tag{20}
\end{equation*}
$$

where $s \leq 33, c \in\{1, \ldots, 9\}$ and $d \in\{0,1, \ldots, 9\}$. For inequality (20), we consider the following two cases: if $(s, c, d) \neq(1,1,0)$, according to (20) and Lemma 2, we take $M=1.01 \times 10^{29}$ and $q_{60}>6 M$, hence we obtain 25 negative values of ϵ, the minimum value in the values of positive ϵ is $0.00004477 \ldots$ and $n<171$. For the values of (s, c, d) corresponding to the 25 negative values of ϵ, we take $q_{63}>6 M$, according to (20) and Lemma 2, we get the minimum value in the values of ϵ is $0.005613 \ldots$ and $n<168$. If $(s, c, d)=(1,1,0)$, from (20), we get

$$
\begin{equation*}
0<\left|t \frac{\log 10}{\log \alpha}-n\right|<\frac{\frac{4}{\log \alpha}}{\alpha^{n}} \tag{21}
\end{equation*}
$$

According to Lemma 3, we take $M=1.01 \cdot 10^{29}$ and $q_{60}>M$, hence we get $a_{M}:=\max \left\{a_{i}: i=0,1, \ldots, 60\right\}=106$ and we have

$$
\begin{equation*}
\left|t \frac{\log 10}{\log \alpha}-n\right|>\frac{1}{\left(a_{M}+2\right) t}>\frac{1}{108 \cdot 1.01 \cdot 10^{29}} \tag{22}
\end{equation*}
$$

Thus, from (21) and (22), we get

$$
\frac{1}{108 \cdot 1.01 \cdot 10^{29}}<\frac{\frac{4}{\log \alpha}}{\alpha^{n}}
$$

which leads to $n<153$. In summary, we have $n<171$. This contradicts the assumption $n>1000$. Finally, we search for the solutions to (1) in the range $n \leq 1000$ by applying a program written in Mathematica and we obtain the solutions $\left(n, L_{n}\right) \in\{(6,18),(7,29),(8,47),(9,76),(11,199),(12,322)\}$. We complete the proof.

4. Conclusions and Future Research

For a fixed integer $k \geq 2$, let $\left\{F_{n}^{(k)}\right\}_{n \geq 2-k}$ be the k-generalized Fibonacci sequence defined by $F_{n}^{(k)}=F_{n-1}^{(k)}+F_{n-2}^{(k)}+\cdots+F_{n-k}^{(k)}$ with the initial values $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0, F_{1}^{(k)}=1$ and $\left\{L_{n}^{(k)}\right\}_{n \geq 2-k}$ be the k-generalized Lucas sequence given by $L_{n}^{(k)}=L_{n-1}^{(k)}+L_{n-2}^{(k)}+\cdots+L_{n-k}^{(k)}$ with the initial values $L_{-(k-2)}^{(k)}=L_{-(k-3)}^{(k)}=\cdots=L_{-1}^{(k)}=0, L_{0}^{(k)}=2, L_{1}^{(k)}=1$. Suppose that $c, d \in\{0,1, \ldots, 9\}, c \neq d, c>0, s \geq 1$ and $t \geq 1$, our aim is to solve the two Diophantine equations

$$
\begin{equation*}
F_{n}^{(k)}=\underbrace{\overline{c \cdots c} \underbrace{d \cdots d}_{\text {times }}}_{\text {stimes }} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}^{(k)}=\underbrace{\overline{c \cdots c} \underbrace{d \cdots d}_{\text {times }}}_{\text {stimes }} . \tag{24}
\end{equation*}
$$

For $k=2$ and $k=3$, the Diophantine Equation (23) has been solved in [18] and [21], respectively. In this paper, we solve the Diophantine Equation (24) for the case of $k=2$. Our future research work is to solve the Diophantine Equations (23) and (24) completely for the case of $k \geq 3$. In addition, for the main Mathematica programs used in this paper, readers can refer to Appendix A.

Author Contributions: Writing—original draft preparation, Y.Q. and J.Z.; Writing—review and editing, Y.Q. and J.Z.; Y.Q. and J.Z. have equally contributed to this work. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by Guizhou Provincial Science and Technology Foundation(Grant No. QIANKEHEJICHU[2019]1221) and the National Natural Science Foundation of China(Grant No. 11261060).
Acknowledgments: The authors would like to thank the anonymous reviewers for their very useful and detailed suggestions.
Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Mathematica Programs

We give the main Mathematica programs used in this paper as follows :

- $\quad \alpha=\frac{1+\sqrt{5}}{2} ; \gamma=\frac{\log [10]}{\log [\alpha]}$;
- Generates a list of the first n terms in $\gamma^{\prime} s$ continued fraction representation:
- The denominator of the nth $(n=0,1,2, \ldots)$ convergent of $\gamma^{\prime} s$ continued fraction:

$$
q\left[n_{-}\right]:=\operatorname{Module}\left[\left\{\gamma=\frac{\log [10]}{\log \left[\frac{1+\sqrt{5}}{2}\right]}\right\}, \text { Last }[\text { Denominator }[\text { Convergents }[\gamma, n+1]]]\right] ;
$$

- The function $\|x\|$ which denotes the distance from x to the nearest integer:

$$
\operatorname{cldist}\left[x_{-}, j d _\right]:=\operatorname{Module}[\{ \}, \operatorname{Abs}[N[\operatorname{Round}[x]-x, j d]]] ;
$$

- \quad The number $\epsilon:=\|\tau q\|-M\|\alpha q\|$ in Lemma 2:

$$
e p s i l o n\left[\tau_{-}, q_{-}, M_{-}, \alpha_{-}, j d_{-}\right]:=\operatorname{Module}[\{ \}, \operatorname{cldist}[\tau * q, j d]-M * \operatorname{cldist}[\alpha * q, j d]] ;
$$

- The number $\tau:=-\frac{\log \frac{9}{c}}{\log \alpha}$ in (16): $\tau\left[c_{-}\right]:=-\frac{\log \left[\frac{9}{c}\right]}{\log [\alpha]}$;
- The number $\tau:=\frac{\log \frac{c 10^{s}-(c-d)}{9}}{\log \alpha}$ in (20): $\tau\left[s_{-}, c_{-}, d_{-}\right]:=\frac{\log \left[\frac{c 10^{s}-(c-d)}{9}\right]}{\log [\alpha]}$;
- The nth term of Lucas sequence L_{n} :

$$
\operatorname{Lucas}\left[n_{-}\right]:=\operatorname{Module}\left[\left\{\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}\right\}, \text { Simplify }\left[\operatorname{Expand}\left[\alpha^{n}+\beta^{n}\right]\right]\right] ;
$$

References

1. Dujella, A.; Jadrijević, B. A parametric family of quartic Thue equations. Acta Arith. 2002, 101, 159-170. [CrossRef]
2. Luca, F.; Oyono, R. An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers. Proc. Jpn. Acad. Ser. A Math. Sci. 2011, 87, 45-50. [CrossRef]
3. Marques, D.; Togbé, A. Fibonacci and Lucas numbers of the form $2^{a}+3^{b}+5^{c}$. Proc. Jpn. Acad. Ser. A Math. Sci. 2013, 89, 47-50. [CrossRef]
4. Bitim, B.D. On the Diophantine equation $L_{n}-L_{m}=2 \cdot 3^{a}$. Period. Math. Hung. 2019, 79, 210-217.
5. Luca, F.; Stǎnică, P. Fibonacci numbers of the form $p^{a} \pm p^{b}$. In Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications; Congressus Numerantium; Utilitas Mathematica Pub.: Winnipeg, MB, Canada, 2009; Volume 194, pp. 177-183.
6. Qu, Y.; Zeng, J.; Cao, Y. Fibonacci and Lucas numbers of the form $2^{a}+3^{b}+5^{c}+7^{d}$. Symmetry 2018, 10, 509 . [CrossRef]
7. Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. Mathematics 2019, 7, 700. [CrossRef]
8. Marques, D.; Togbé, A. On repdigits as product of consecutive Fibonacci numbers. Rend. Istit. Mat. Univ. Trieste 2012, 44, 393-397.
9. Irmak, N.; Togbé, A. On repdigits as product of consecutive Lucas numbers. Notes Number Theory Discret. Math. 2018, 24, 95-102. [CrossRef]
10. Trojovský, P. Fibonacci Numbers with a Prescribed Block of Digits. Mathematics 2020, 8, 639. [CrossRef]
11. Bravo, J.J.; Luca, F. On a conjecture about repdigits in k-generalized Fibonacci sequences. Publ. Math.-Debr. 2013, 82, 623-639. [CrossRef]
12. Erduvan, F.; Keskin, R.; Şiar, Z. Repdigits base b as products of two Lucas numbers. Quaest. Math. 2020. [CrossRef]
13. Erduvan, F.; Keskin, R. Repdigits as products of two Fibonacci or Lucas numbers. Proc. Indian Acad. Sci. (Math. Sci.) 2020, 130, 28. [CrossRef]
14. Adegbindin, C.; Luca, F.; Togbé, A. Lucas numbers as sums of two repdigits. Lith. Math. J. 2019, 59, 295-304. [CrossRef]
15. Luca, F. Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 2000, 57, 243-254.
16. Luca, F. Repdigits as sums of three Fibonacci numbers. Math. Commun. 2012, 17, 1-11.
17. Normenyo, B.V.; Luca, F.; Togbé, A. Repdigits as Sums of Four Fibonacci or Lucas Numbers. J. Integer Seq. 2018, 21, 18.7.7.
18. Alahmadi, A.; Altassan, A.; Luca, F.; Shoaib, H. Fibonacci numbers which are concatenations of two repdigits. Quaest. Math. 2019. [CrossRef]
19. Rayaguru, S.G.; Panda, G.K. Balancing numbers which are concatenation of two repdigits. Bol. Soc. Mat. Mex. 2020. [CrossRef]
20. Ddamulira, M. Padovan numbers that are concatenations of two repdigits. arXiv 2020, arXiv:2003.10705.
21. Ddamulira, M. Tribonacci numbers that are concatenations of two repdigits. Camb. Open Engag. 2020. [CrossRef]
22. Matveev, E.M. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. Izv. Math. 2000, 64, 1217-1269. [CrossRef]
23. Dujella, A.; Pethö, A. A generalization of a theorem of Baker and Davenport. Q. J. Math. Oxf. Ser. 1998, 49, 291-306. [CrossRef]
24. Erazo, H.S.; Gómez, C.A.; Luca, F. On Pillai's problem with X-coordinates of Pell equations and powers of 2. J. Number Theory 2019, 203, 294-309. [CrossRef]
