

Article

Lucas Numbers Which Are Concatenations of Two Repdigits

Yunyun Qu 1,2,* and Jiwen Zeng 1

- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; jwzeng@xmu.edu.cn
- School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China
- * Correspondence: qucloud@163.com

Received: 21 July 2020; Accepted: 10 August 2020; Published: 13 August 2020

Abstract: In this paper, we find all Lucas numbers written in the form $\overline{c \cdots cd \cdots d}$, where $\overline{c \cdots cd \cdots d}$ is the concatenation of two repdigits in base 10 with $c, d \in \{0, 1, \dots, 9\}, c \neq d$ and c > 0.

Keywords: Lucas numbers; concatenations of two repdigits; logarithmic height; continued fraction

1. Introduction

Linear form in logarithms has many important applications in solving Diophantine equations [1–4]. In 2002, by applying linear form in logarithms, A. Dujella and B. Jadrijević [1] showed that the solutions to quartic Thue equations $x^4 - 4cx^3y + (6c+2)x^2y^2 + 4cxy^3 + y^4 = 1$ are only $(x,y) = (\pm 1,0)$ and $(0,\pm 1)$ for an integer $c \geq 3$. Suppose that $\{F_n\}_{n\geq 0}$ is the Fibonacci sequence given by $F_{n+2} = F_{n+1} + F_n$, with initial values $F_0 = 0$ and $F_1 = 1$ and let $\{L_n\}_{n\geq 0}$ be the Lucas sequence defined by $L_{n+2} = L_{n+1} + L_n$, where $L_0 = 2$ and $L_1 = 1$. In 2011, F. Luca and R. Oyono [2] concluded that there is no solution (m,n,s) to the Diophantine equation $F_m^s + F_{m+1}^s = F_n$ for integers $m \geq 2$, $n \geq 1$, $s \geq 3$ by applying linear form in logarithms. There are many papers in the literature which solve Diophantine equations related to Fibonacci numbers and Lucas numbers [3–14]. In 2013, D. Marques and A. Togbé [3] found all solutions (n,a,b,c) to the Diophantine equation $F_n = 2^a + 3^b + 5^c$ and $L_n = 2^a + 3^b + 5^c$ for integers n,a,b,c with $0 \leq \max\{a,b\} \leq c$. In 2019, B. D. Bitim [4] investigated the solutions (n,m,a) to the Diophantine equation $L_n - L_m = 2 \cdot 3^a$ for nonnegative integers n,m,a with n > m. Let p be a prime number and $\max\{a,b\} \geq 2$, in 2009, F. Luca and P. Stǎnicǎ [5] concluded that there are only finitely many positive integer solutions (n,p,a,b) to the Diophantine equation $F_n = p^a \pm p^b$.

Assume that $q \ge 2$ is an integer. A positive number $n \in \mathbb{N}$ is called a base q-repdigit if $n = c\frac{q^t-1}{q-1}$, for some $t \ge 1$ and $c \in \{1,2,\ldots,q-1\}$. When q = 10, n is simply called a repdigit. We use $\overline{B_1\cdots B_t}_{(q)}$ to express an integer's base -q representation which is the concatenation of the base -q representations of positive integers B_1,\ldots,B_t . We ignore writing q if q = 10. Then we can denote the repdigit n by $n = \overline{c\cdots c}$ and the concatenation of two repdigits in base 10 is $\overline{c\cdots c}$ $\overline{d\cdots d}$, where $c,d \in \{0,1,\ldots,9\}$, $c \ne d,c > 0$, $s \ge 1$ and $t \ge 1$. There are many papers in the literature on investigating Diophantine equations related to repdigits [8,9,11-21]. In 2000, Luca [15] proved that if $F_n = a\frac{10^m-1}{9}$ and $L_n = a\frac{10^m-1}{9}$ for some $a \in \{0,1,\ldots,9\}$ and $m \ge 1$, then n = 0,1,2,3,4,5,6,10 and n = 0,1,2,3,4,5 respectively. In 2012, all repdigits in base 10 expressible as sums of three Fibonacci numbers were found in [16]. In 2018, all repdigits in base 10 which are sums of four Fibonacci or Lucas numbers were determined in [17]. In 2019, all solutions to the Diophantine equation $F_n = \overline{a \cdots ab \cdots b}$

were found in [18], where $a,b \in \{0,1,\ldots,9\}$ and a > 0. For the research of concatenations of

Mathematics 2020, 8, 1360 2 of 8

two repdigits in balancing numbers, Padovan numbers and Tribonacci numbers, please refer to the literature [19–21] respectively.

In this paper, we find all Lucas numbers which are concatenations of two repdigits. More precisely, we have the following result.

Theorem 1. If

$$L_n = \underbrace{\overline{c \cdots c} \underbrace{d \cdots d}}_{s \text{ times}}, \tag{1}$$

with $c, d \in \{0, 1, ..., 9\}, c \neq d, c > 0, s \ge 1$ and $t \ge 1$, then

$$(n, L_n) \in \{(6, 18), (7, 29), (8, 47), (9, 76), (11, 199), (12, 322)\}.$$

2. Preliminaries

Firstly, the Binet's formula for Lucas sequence is

$$L_n = \alpha^n + \beta^n, n > 0$$

where $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. For all positive integers n, we have the following inequality

$$\alpha^{n-1} \le L_n \le \alpha^{n+1}. \tag{2}$$

Secondly, we recall the definition and properties for logarithmic height of an algebraic number. Let η be an algebraic number of degree m and suppose that the minimal primitive polynomial of η is $f(X) := a_0 \prod_{i=1}^m (X - \eta^{(i)}) \in \mathbb{Z}[X]$ with $a_0 > 0$. We give the logarithmic height of η by

$$h(\eta) := \frac{1}{m} \left(\log a_0 + \sum_{i=1}^m \log \max\{|\eta^{(i)}|, 1\} \right).$$

In this paper, for any two integers a and b, we denote the greatest common divisor of a and b by $\gcd(a,b)$. Specifically, $h(\eta) = \log \max\{|p|,q\}$ when $\eta = \frac{p}{q} \in \mathbb{Q}$ with $\gcd(p,q) = 1$ and q > 0. We have the following properties of the logarithmic height $h(\cdot)$:

$$h(\eta \pm \gamma) \le h(\eta) + h(\gamma) + \log 2,$$

 $h(\eta \gamma^{\pm 1}) \le h(\eta) + h(\gamma),$
 $h(\eta^k) = |k|h(\eta) \ (k \in \mathbb{Z}).$

We need the following lemma to prove our theorem.

Lemma 1. (see [22]) Let $d_{\mathbb{L}}$ be the degree of an algebraic number field \mathbb{L} over \mathbb{Q} and $\mathbb{L} \subseteq \mathbb{R}$. Let $\gamma_1, \gamma_2, \ldots, \gamma_l \in \mathbb{L}$ be non-zero elements and let b_1, \ldots, b_l be rational integers. If $\Gamma := \gamma_1^{b_1} \cdots \gamma_l^{b_l} - 1 \neq 0$, then

$$|\Gamma| \ge \exp(-1.4 \cdot 30^{l+3} l^{4.5} d_{\mathbb{L}}^2 (1 + \log d_{\mathbb{L}}) (1 + \log B) A_1 \cdots A_l),$$

where A_i are real numbers such that

$$A_i \geq \max\{d_{\mathbb{T}}h(\gamma_i), |\log \gamma_i|, 0.16\}$$

for
$$j = 1, ..., l$$
 and $B \ge \max\{|b_1|, ..., |b_l|, 3\}$.

Thirdly, we need the following Lemma 2 and Lemma 3 to reduce some large upper bounds on the variables in the course of our calculations.

Mathematics 2020, 8, 1360 3 of 8

Lemma 2. (see [23]) Let M be a positive integer and let $\frac{p}{q}$ be a convergent of the continued fraction of the irrational number α such that q > 6M, and let A, B, τ be some real numbers with A > 0 and B > 1. Let $\epsilon := \|\tau q\| - M\|\alpha q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. If $\epsilon > 0$, then there exists no solution to the inequality

$$0 < |u\alpha - v + \tau| < AB^{-\omega}$$

in positive integers u, v, and ω with $u \leq M$ and $w \geq \frac{\log(Aq/\epsilon)}{\log B}$.

Lemma 3. (see [24]) Let τ be an irrational number, M be a positive integer and $\frac{p_k}{q_k}(k=0,1,2,\ldots)$ be all the convergents of the continued fraction $[a_0,a_1,\ldots]$ of τ . Let N be such that $q_N>M$. Then putting $a_M:=\max\{a_i:i=0,1,\ldots,N\}$, the inequality

$$|m\tau - n| > \frac{1}{(a_M + 2)m}$$

holds for all pairs (n, m) of integers with 0 < m < M.

3. Proof of Theorem 1

3.1. Bounding n

According to (1), we get

$$L_{n} = \underbrace{\overline{c \cdots c}}_{s \text{ times}} \underbrace{\frac{d \cdots d}{t \text{ times}}}_{t \text{ times}}$$

$$= \underbrace{\overline{c \cdots c}}_{s \text{ times}} \cdot 10^{t} + \underbrace{\overline{d \cdots d}}_{t \text{ times}}$$

$$= \frac{1}{9} (c10^{s+t} - (c-d)10^{t} - d).$$
(3)

Suppose that n>1000. From inequality (2), we can get $\alpha^{n-1} \leq L_n < 10^{s+t}$ and $10^{s+t-1} \leq L_n \leq \alpha^{n+1}$, which implies that

$$(s+t)\log 10 - \log 10 - \log \alpha \le n\log \alpha < (s+t)\log 10 + \log \alpha. \tag{4}$$

Thus, we can get

$$4.78(s+t) - 5.8 < n < 4.79(s+t) + 1. \tag{5}$$

From (5), we get $s+t>\frac{n-1}{4.79}>208$ and n>s+t. According to (3) and Binet's formulae for Lucas sequences, we get

$$|9\alpha^n - c10^{s+t}| = |-9\beta^n - ((c-d)10^t + d)| \le 9\alpha^{-n} + 9 \cdot 10^t + 9 < 27 \cdot 10^t, \tag{6}$$

which implies that

$$\left| \frac{9}{c} \alpha^n 10^{-s-t} - 1 \right| < \frac{27}{10^s}. \tag{7}$$

Let $\Gamma_1:=\frac{9}{c}\alpha^n 10^{-s-t}-1$, then $\Gamma_1\neq 0$. If $\Gamma_1=0$, then $\alpha^n=\frac{10^{s+t}c}{9}\in\mathbb{Q}$, thus we have $\frac{10^{s+t}c}{9}=\frac{(1+\sqrt{5})^n}{2^n}=\frac{f+g\sqrt{5}}{2^n}$, where $f,g\in\mathbb{Z}, f>0,g>0$, this implies that $\sqrt{5}=\frac{10^{s+t}c^{2n}}{9}-f\in\mathbb{Q}$, which is impossible. According to Lemma 1, we take l=3, $\gamma_1=\frac{9}{c}, \gamma_2=\alpha, \gamma_3=10$ and $b_1=1, b_2=n, b_3=-s-t$. Thus, we have $\mathbb{L}=\mathbb{Q}(\alpha), d_{\mathbb{L}}=[\mathbb{L}:\mathbb{Q}]=2$. Note that $h(\gamma_1)=h(\frac{9}{c})\leq \log 9, h(\gamma_2)=\frac{1}{2}\log \alpha, h(\gamma_3)=\log 10$. Thus, we can take $A_1=2\log 9, A_2=0.5, A_3=4.8$. Note that $B=\max\{|b_1|,|b_2|,|b_3|,3\}=\max\{1,n,s+t,3\}=n$. Hence, we get

$$\mid \Gamma_1 \mid > \exp(-C_1(1 + \log n)), \tag{8}$$

Mathematics 2020, 8, 1360 4 of 8

where $C_1 = 1.025 \times 10^{13}$. Thus from (7) and (8), we can get

$$s\log 10 < C_1(1 + \log n) + \log 27.$$
 (9)

We rewrite Equation (3), then we get

$$\left| \alpha^n - \frac{c10^s - (c - d)}{9} \cdot 10^t \right| = \left| \beta^n + \frac{d}{9} \right| \le \alpha^{-n} + 1 < 2.$$
 (10)

It follows that

$$\left| \frac{c10^s - (c - d)}{9} \cdot \alpha^{-n} \cdot 10^t - 1 \right| < \frac{2}{\alpha^n}. \tag{11}$$

Let $\Gamma_2:=\frac{c10^s-(c-d)}{9}\cdot \alpha^{-n}\cdot 10^t-1$, then $\Gamma_2\neq 0$. If $\Gamma_2=0$, then $\alpha^n=\frac{c10^s-(c-d)}{9}\cdot 10^t\in \mathbb{Q}$, which is false. According to Lemma 1, we take $l=3, \gamma_1=\frac{c10^s-(c-d)}{9}, \gamma_2=\alpha, \gamma_3=10$ and $b_1=1, b_2=-n, b_3=t$. Thus, we have $\mathbb{L}=\mathbb{Q}(\alpha)$, $d_{\mathbb{L}}=[\mathbb{L}:\mathbb{Q}]=2$. From (9), we can get

$$h(\gamma_1) \le h(c10^s - (c - d)) + h(9)$$

$$\le 3\log 9 + s\log 10 + \log 2$$

$$\le C_1(1 + \log n) + \log 27 + 3\log 9 + \log 2$$

$$\le 1.03 \cdot 10^{13} \cdot (1 + \log n),$$
(12)

and we have $h(\gamma_2) = \frac{1}{2}\log\alpha$, $h(\gamma_3) = \log 10$. Thus, we can take $A_1 = 2.06 \cdot 10^{13} \cdot (1 + \log n)$, $A_2 = 0.5$, $A_3 = 4.8$. Note that $B = \max\{|b_1|, |b_2|, |b_3|, 3\} = \max\{1, n, t, 3\} = n$. Hence, we get

$$|\Gamma_2| > \exp(-C_2(1 + \log n)^2),$$
 (13)

where $C_2 = 4.8 \times 10^{25}$. Thus from (11) and (13), we can get

$$n\log\alpha < C_2(1+\log n)^2 + \log 2,\tag{14}$$

this implies that $n < 4.8 \times 10^{29}$. Hence we can conclude that

$$s+t < \frac{n+5.8}{4.78} < 1.01 \cdot 10^{29}.$$

To sum up, we have the lemma as follows.

Lemma 4. If (n, c, d, s, t) is a solution in non-negative integers of Equation (1), with $c, d \in \{0, 1, ..., 9\}$, $c \neq d$ and c > 0, then

$$s + t < n < 4.8 \cdot 10^{29}, s + t < 1.01 \cdot 10^{29}$$

3.2. Reducing the Bound on n

We use the Lemmas 2 and 3 to reduce the bound for n. Let

$$\Lambda_1 := (s+t)\log 10 - n\log \alpha - \log \frac{9}{c}.$$

From (7), we conclude that

$$\left| e^{-\Lambda_1} - 1 \right| < \frac{27}{10^s}. \tag{15}$$

Mathematics 2020, 8, 1360 5 of 8

If $s \geq 2$, then $|e^{-\Lambda_1}-1| < \frac{27}{10^s} < \frac{1}{2}$, which implies that $\frac{1}{2} < e^{-\Lambda_1} < \frac{3}{2}$. If $\Lambda_1 > 0$, then $0 < \Lambda_1 < e^{\Lambda_1} - 1 = e^{\Lambda_1}(1-e^{-\Lambda_1}) < \frac{54}{10^s}$. If $\Lambda_1 < 0$, then $0 < |\Lambda_1| < e^{|\Lambda_1|} - 1 = e^{-\Lambda_1} - 1 < \frac{27}{10^s}$. In any case, it is always holds true $0 < |\Lambda_1| < \frac{54}{10^s}$, which implies

$$0 < \left| (s+t) \frac{\log 10}{\log \alpha} - n - \frac{\log \frac{9}{c}}{\log \alpha} \right| < \frac{\frac{54}{\log \alpha}}{10^{s}}. \tag{16}$$

The continued fraction of $\frac{\log 10}{\log \alpha}$ is $[a_0,a_1,a_2,a_3,a_4,\dots]=[4,1,3,1,1,1,6,\dots]$, and let $\frac{p_k}{q_k}$ be its kth convergent. Note that $s+t<1.01\cdot 10^{29}$ by Lemma 4. It is easy to see that $\frac{\log 10}{\log \alpha}$ is irrational. In fact, if $\frac{\log 10}{\log \alpha}=\frac{p}{q}(p,q\in\mathbb{Z})$ and p>0,q>0, $\gcd(p,q)=1)$, then $\alpha^p=10^q\in\mathbb{Q}$, which is an absurdity. For all $c\in\{1,\dots,8\}$, according to (16) and Lemma 2, we take $M=1.01\cdot 10^{29}$ and $q_{60}>6M$, hence we get the minimum value of ϵ is $0.061483\dots$ and s<34. If c=9, from (16), we get

$$0 < \left| (s+t) \frac{\log 10}{\log \alpha} - n \right| < \frac{\frac{54}{\log \alpha}}{10^s}. \tag{17}$$

According to Lemma 3, we take $M=1.01\cdot 10^{29}$ and $q_{60}>M$, hence we get $a_M:=\max\{a_i:i=0,1,\ldots,60\}=106$ and we have

$$\left| (s+t)\frac{\log 10}{\log \alpha} - n \right| > \frac{1}{(a_M + 2)(s+t)} > \frac{1}{108 \cdot 1.01 \cdot 10^{29}}.$$
 (18)

Thus, from (17) and (18), we get

$$\frac{1}{108 \cdot 1.01 \cdot 10^{29}} < \frac{\frac{54}{\log \alpha}}{10^{s}},$$

this leads to s < 34. So we always have s < 34.

Let

$$\Lambda_2 := t \log 10 - n \log \alpha + \log \frac{c 10^s - (c - d)}{9}.$$

From (11) and n > 1000, we conclude that

$$\left| e^{\Lambda_2} - 1 \right| < \frac{2}{\alpha^n} < \frac{1}{2},\tag{19}$$

which implies that $\frac{1}{2} < e^{\Lambda_2} < \frac{3}{2}$. If $\Lambda_2 > 0$, then $0 < \Lambda_2 < e^{\Lambda_2} - 1 < \frac{2}{\alpha^n}$. If $\Lambda_2 < 0$, then $0 < |\Lambda_2| < e^{-\Lambda_2} - 1 = e^{-\Lambda_2} (1 - e^{\Lambda_2}) < \frac{4}{\alpha^n}$. In any case, since $0 < |\Lambda_2| < \frac{4}{\alpha^n}$, thus we have

$$0 < \left| t \frac{\log 10}{\log \alpha} - n + \frac{\log \frac{c 10^s - (c - d)}{9}}{\log \alpha} \right| < \frac{\frac{4}{\log \alpha}}{\alpha^n}, \tag{20}$$

where $s \leq 33$, $c \in \{1, \ldots, 9\}$ and $d \in \{0, 1, \ldots, 9\}$. For inequality (20), we consider the following two cases: if $(s, c, d) \neq (1, 1, 0)$, according to (20) and Lemma 2, we take $M = 1.01 \times 10^{29}$ and $q_{60} > 6M$, hence we obtain 25 negative values of ϵ , the minimum value in the values of positive ϵ is $0.00004477\ldots$ and n < 171. For the values of (s, c, d) corresponding to the 25 negative values of ϵ , we take $q_{63} > 6M$, according to (20) and Lemma 2, we get the minimum value in the values of ϵ is $0.005613\ldots$ and n < 168. If (s, c, d) = (1, 1, 0), from (20), we get

$$0 < \left| t \frac{\log 10}{\log \alpha} - n \right| < \frac{\frac{4}{\log \alpha}}{\alpha^n}. \tag{21}$$

Mathematics 2020, 8, 1360 6 of 8

According to Lemma 3, we take $M=1.01\cdot 10^{29}$ and $q_{60}>M$, hence we get $a_M:=\max\{a_i:i=0,1,\ldots,60\}=106$ and we have

$$\left| t \frac{\log 10}{\log \alpha} - n \right| > \frac{1}{(a_M + 2)t} > \frac{1}{108 \cdot 1.01 \cdot 10^{29}}.$$
 (22)

Thus, from (21) and (22), we get

$$\frac{1}{108 \cdot 1.01 \cdot 10^{29}} < \frac{\frac{4}{\log \alpha}}{\alpha^n},$$

which leads to n < 153. In summary, we have n < 171. This contradicts the assumption n > 1000. Finally, we search for the solutions to (1) in the range $n \le 1000$ by applying a program written in Mathematica and we obtain the solutions $(n, L_n) \in \{(6, 18), (7, 29), (8, 47), (9, 76), (11, 199), (12, 322)\}$. We complete the proof.

4. Conclusions and Future Research

For a fixed integer $k \geq 2$, let $\{F_n^{(k)}\}_{n\geq 2-k}$ be the k-generalized Fibonacci sequence defined by $F_n^{(k)} = F_{n-1}^{(k)} + F_{n-2}^{(k)} + \cdots + F_{n-k}^{(k)}$ with the initial values $F_{-(k-2)}^{(k)} = F_{-(k-3)}^{(k)} = \cdots = F_0^{(k)} = 0$, $F_1^{(k)} = 1$ and $\{L_n^{(k)}\}_{n\geq 2-k}$ be the k-generalized Lucas sequence given by $L_n^{(k)} = L_{n-1}^{(k)} + L_{n-2}^{(k)} + \cdots + L_{n-k}^{(k)}$ with the initial values $L_{-(k-2)}^{(k)} = L_{-(k-3)}^{(k)} = \cdots = L_{-1}^{(k)} = 0$, $L_0^{(k)} = 2$, $L_1^{(k)} = 1$. Suppose that $c,d \in \{0,1,\ldots,9\}, c \neq d,c > 0$, $s \geq 1$ and $t \geq 1$, our aim is to solve the two Diophantine equations

$$F_n^{(k)} = \underbrace{\overline{c \cdots c} \, \underline{d \cdots d}}_{s \text{ times } t \text{ times}} \tag{23}$$

and

$$L_n^{(k)} = \underbrace{\overline{c \cdots c} \, \underline{d \cdots d}}_{s \text{ times } t \text{ times}}.$$
 (24)

For k = 2 and k = 3, the Diophantine Equation (23) has been solved in [18] and [21], respectively. In this paper, we solve the Diophantine Equation (24) for the case of k = 2. Our future research work is to solve the Diophantine Equations (23) and (24) completely for the case of $k \ge 3$. In addition, for the main Mathematica programs used in this paper, readers can refer to Appendix A.

Author Contributions: Writing—original draft preparation, Y.Q. and J.Z.; Writing—review and editing, Y.Q. and J.Z.; Y.Q. and J.Z. have equally contributed to this work. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by Guizhou Provincial Science and Technology Foundation(Grant No. QIANKEHEJICHU[2019]1221) and the National Natural Science Foundation of China(Grant No. 11261060).

Acknowledgments: The authors would like to thank the anonymous reviewers for their very useful and detailed suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Mathematica Programs

We give the main Mathematica programs used in this paper as follows:

- $\alpha = \frac{1+\sqrt{5}}{2}$; $\gamma = \frac{\log[10]}{\log[\alpha]}$;
- Generates a list of the first n terms in $\gamma's$ continued fraction representation:

ContinuedFraction[γ , n]

Mathematics **2020**, 8, 1360 7 of 8

• The denominator of the nth(n = 0, 1, 2, ...) convergent of $\gamma's$ continued fraction:

$$q[n_{-}] := Module[\{\gamma = \frac{\log[10]}{\log[\frac{1+\sqrt{5}}{2}]}\}, Last[Denominator[Convergents[\gamma, n+1]]]];$$

• The function ||x|| which denotes the distance from x to the nearest integer:

$$cldist[x_, jd_] := Module[\{\}, Abs[N[Round[x] - x, jd]]];$$

• The number $\epsilon := ||\tau q|| - M||\alpha q||$ in Lemma 2:

$$epsilon[\tau_, q_, M_, \alpha_, jd_] := Module[\{\}, cldist[\tau * q, jd] - M * cldist[\alpha * q, jd]];$$

- The number $\tau := -\frac{\log \frac{9}{c}}{\log \alpha}$ in (16): $\tau[c_{-}] := -\frac{\log \left[\frac{9}{c}\right]}{\log \left[\alpha\right]}$;
- The number $\tau := \frac{\log \frac{c10^s (c-d)}{9}}{\log \alpha}$ in (20): $\tau[s_, c_, d_] := \frac{\log [\frac{c10^s (c-d)}{9}]}{\log [\alpha]}$;
- The nth term of Lucas sequence L_n :

$$Lucas[n_] := Module[\{\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}\}, Simplify[Expand[\alpha^n + \beta^n]]];$$

References

- 1. Dujella, A.; Jadrijević, B. A parametric family of quartic Thue equations. *Acta Arith.* **2002**, *101*, 159–170. [CrossRef]
- 2. Luca, F.; Oyono, R. An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers. *Proc. Jpn. Acad. Ser. A Math. Sci.* **2011**, *87*, 45–50. [CrossRef]
- 3. Marques, D.; Togbé, A. Fibonacci and Lucas numbers of the form $2^a + 3^b + 5^c$. *Proc. Jpn. Acad. Ser. A Math. Sci.* **2013**, *89*, 47–50. [CrossRef]
- 4. Bitim, B.D. On the Diophantine equation $L_n L_m = 2 \cdot 3^a$. Period. Math. Hung. **2019**, 79, 210–217.
- 5. Luca, F.; Stănică, P. Fibonacci numbers of the form $p^a \pm p^b$. In *Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications*; Congressus Numerantium; Utilitas Mathematica Pub.: Winnipeg, MB, Canada, 2009; Volume 194, pp. 177–183.
- 6. Qu, Y.; Zeng, J.; Cao, Y. Fibonacci and Lucas numbers of the form $2^a + 3^b + 5^c + 7^d$. Symmetry **2018**, 10, 509. [CrossRef]
- 7. Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. *Mathematics* **2019**, *7*, 700. [CrossRef]
- 8. Marques, D.; Togbé, A. On repdigits as product of consecutive Fibonacci numbers. *Rend. Istit. Mat. Univ. Trieste* **2012**, *44*, 393–397.
- 9. Irmak, N.; Togbé, A. On repdigits as product of consecutive Lucas numbers. *Notes Number Theory Discret. Math.* **2018**, 24, 95–102. [CrossRef]
- 10. Trojovský, P. Fibonacci Numbers with a Prescribed Block of Digits. Mathematics 2020, 8, 639. [CrossRef]
- 11. Bravo, J.J.; Luca, F. On a conjecture about repdigits in k-generalized Fibonacci sequences. *Publ. Math.-Debr.* **2013**, *82*, 623–639. [CrossRef]
- 12. Erduvan, F.; Keskin, R.; Şiar, Z. Repdigits base b as products of two Lucas numbers. *Quaest. Math.* **2020**. [CrossRef]
- 13. Erduvan, F.; Keskin, R. Repdigits as products of two Fibonacci or Lucas numbers. *Proc. Indian Acad. Sci.* (*Math. Sci.*) **2020**, 130, 28. [CrossRef]
- 14. Adegbindin, C.; Luca, F.; Togbé, A. Lucas numbers as sums of two repdigits. *Lith. Math. J.* **2019**, *59*, 295–304. [CrossRef]
- 15. Luca, F. Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 2000, 57, 243-254.
- 16. Luca, F. Repdigits as sums of three Fibonacci numbers. *Math. Commun.* **2012**, *17*, 1–11.

Mathematics 2020, 8, 1360 8 of 8

17. Normenyo, B.V.; Luca, F.; Togbé, A. Repdigits as Sums of Four Fibonacci or Lucas Numbers. *J. Integer Seq.* **2018**, *21*, 18.7.7.

- 18. Alahmadi, A.; Altassan, A.; Luca, F.; Shoaib, H. Fibonacci numbers which are concatenations of two repdigits. *Quaest. Math.* **2019**. [CrossRef]
- 19. Rayaguru, S.G.; Panda, G.K. Balancing numbers which are concatenation of two repdigits. *Bol. Soc. Mat. Mex.* **2020.** [CrossRef]
- 20. Ddamulira, M. Padovan numbers that are concatenations of two repdigits. arXiv 2020, arXiv:2003.10705.
- 21. Ddamulira, M. Tribonacci numbers that are concatenations of two repdigits. *Camb. Open Engag.* **2020**. [CrossRef]
- 22. Matveev, E.M. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. *Izv. Math.* **2000**, *64*, 1217–1269. [CrossRef]
- 23. Dujella, A.; Pethö, A. A generalization of a theorem of Baker and Davenport. *Q. J. Math. Oxf. Ser.* **1998**, 49, 291–306. [CrossRef]
- 24. Erazo, H.S.; Gómez, C.A.; Luca, F. On Pillai's problem with X-coordinates of Pell equations and powers of 2. *J. Number Theory* **2019**, 203, 294–309. [CrossRef]

 \odot 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).