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Abstract: In this paper, we find all Lucas numbers written in the formc---cd - - -d, wherec---cd - - -d
is the concatenation of two repdigits in base 10 with ¢,d € {0,1,...,9},c #dand ¢ > 0.
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1. Introduction

Linear form in logarithms has many important applications in solving Diophantine
equations [1-4]. In 2002, by applying linear form in logarithms, A. Dujella and B. Jadrijevi¢ [1]
showed that the solutions to quartic Thue equations x* — 4cx®y + (6¢ + 2)x%y? + 4exy® + y* =
are only (x,y) = (£1,0) and (0, £1) for an integer ¢ > 3. Suppose that {F,},>0 is the Fibonacci
sequence given by F,1» = F,y1 + F,, with initial values Fy = 0 and F; = 1 and let {L,},>0
be the Lucas sequence defined by L,.» = L,41 + Ly, where Ly = 2 and L; = 1. In 2011,
F. Luca and R. Oyono [2] concluded that there is no solution (m,n,s) to the Diophantine equation
F, +E ma1 = In for integers m > 2,n > 1,s > 3 by applying linear form in logarithms. There are
many papers in the literature which solve Diophantine equations related to Fibonacci numbers
and Lucas numbers [3-14]. In 2013, D. Marques and A. Togbé [3] found all solutions (1,4,b,¢c) to
the Diophantine equation F, = 2% + 3V +5¢ and L, = 2%+ 3% + 5¢ for integers n,a,b,c with
0 < max{a,b} < c. In 2019, B. D. Bitim [4] investigated the solutions (1, m,a) to the Diophantine
equation L, — L;; = 2 - 3” for nonnegative integers n, m,a with n > m. Let p be a prime number and
max{a,b} > 2,1in 2009, F. Luca and P. Stanica [5] concluded that there are only finitely many positive
integer solutions (1, p, a, b) to the Diophantine equation F, = p + p.

Assume that g > 2 is an integer. A positive number n € N is called a base g—repdigit if

n = cq—l, for some t > 1and c € {1,2,...,94 —1}. When q = 10, n is simply called a repdigit.
We use By -+ By - Bt(y) to express an integer’s base—q representation which is the concatenation of the
base—g representations of positive integers By, ..., B;. We ignore writing q if § = 10. Then we can
denote the repdigit n by n = c\/_ ¢ and the concatenation of two repdigits in base 10 is ¢ - C d---d,

t times s tzmes t times

where ¢,d € {0,1,...,9},c #d,c > 0,5 > 1 and t > 1. There are many papers in the literature on
investigating Diophantine equations related to repdigits [8,9,11-21]. In 2000, Luca [15] proved that if
F, = alomT_l and L, = alOW;_l for somea € {0,1,...,9}and m > 1,thenn =0,1,2,3,4,5,6,10 and
n=20,1,2,3,4,5 respectively. In 2012, all repdigits in base 10 expressible as sums of three Fibonacci
numbers were found in [16]. In 2018, all repdigits in base 10 which are sums of four Fibonacci or Lucas
numbers were determined in [17]. In 2019, all solutions to the Diophantine equation F, = g - 4 b ‘b

m tzmes l times
were found in [18], where a,b € {0,1,...,9} and 4 > 0. For the research of concatenations of
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two repdigits in balancing numbers, Padovan numbers and Tribonacci numbers, please refer to the
literature [19-21] respectively.

In this paper, we find all Lucas numbers which are concatenations of two repdigits. More precisely,
we have the following result.

Theorem 1. If

s times t times
withc,d € {0,1,...,9}, c#d,c>0,s > land t > 1, then
(n,Ly) € {(6,18),(7,29), (8,47), (9,76), (11,199), (12,322) .

2. Preliminaries

Firstly, the Binet’s formula for Lucas sequence is
Ly=a"+p"n>0,

where o = % and g = 1%\/5 For all positive integers 1, we have the following inequality
Dén71 <L,< og"Jrl, (2)

Secondly, we recall the definition and properties for logarithmic height of an algebraic number.
Let 1 be an algebraic number of degree m and suppose that the minimal primitive polynomial of # is
F(X) :=ag[T",(X — #) € Z[X] with ag > 0. We give the logarithmic height of 7 by

1 L .
h(n) = p” <loga0 + 210gmax{|17(1)|,1}> .
i=1

In this paper, for any two integers a and b, we denote the greatest common divisor of 2 and b by
ged(a, b). Specifically, h(n) = log max{|p|,q} wheny = % € Qwith ged(p,q) = 1and g > 0. We have
the following properties of the logarithmic height i(-):

h(nxv) <h(n)+h(y)+log2,

h(py™) < h(n) +h(y),
h(n*) = |k|lh(n) (k € Z).

We need the following lemma to prove our theorem.

Lemma 1. (see [22]) Let dy, be the degree of an algebraic number field I over Q and L. C R. Let y1,2,...,71 € L
be non-zero elements and let by, . . ., by be rational integers. If I’ := fylljl e fy?’ —15£0, then

IT| > exp(—1.4-30"31*542 (1 + logdy ) (1 4 logB) A1 - - - A)),
where Aj are real numbers such that
Aj > max{d]Lh('y]-), |logfyj|,0.16}
forj=1,...,1and B> max{|bi|,...,|b],3}.

Thirdly, we need the following Lemma 2 and Lemma 3 to reduce some large upper bounds on the
variables in the course of our calculations.
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Lemma 2. (see [23]) Let M be a positive integer and let 5 be a convergent of the continued fraction of the
irvational number « such that q > 6M, and let A, B, T be some real numbers with A > 0 and B > 1.
Let € := ||tq|| — M||aq||, where || - || denotes the distance from the nearest integer. If € > 0, then there exists
no solution to the inequality

0<|un—v+7| <AB™“

log(Aq/€)
logB *

in positive integers u, v, and w withu < M and w >

Lemma 3. (see [24]) Let T be an irrational number, M be a positive integer and %(k =0,1,2,...) beall
the convergents of the continued fraction [ag,ay,...] of T. Let N be such that qy > M. Then putting
ay;:=max{a; :i=0,1,..., N}, the inequality

1
mt —n| > ————
| | (apm +2)m
holds for all pairs (n, m) of integers with 0 < m < M.
3. Proof of Theorem 1
3.1. Bounding n
According to (1), we get
L,=c---cd --d
N ——~
s times t times
—c—¢c-10 .
= c-10" +d d )
s times t times

= %( 1057 — (c — d)10" — d).

Suppose that n > 1000. From inequality (2), we can get a"~' < L, < 10°"" and
105+-1 < L, < a1, which implies that

(s +t)logl0 —log10 — loga < nloga < (s + t)log10 + logw. 4)

Thus, we can get
478(s+1t) —58 <n <479(s+1t)+1. ®)

From (5), we get s+t > 4% > 208 and n > s + t. According to (3) and Binet’s formulae for
Lucas sequences, we get

194" — c10°M| = | — 98" — ((c — d)10"' +d)| <9a™ " +9-10" +9 < 27 -10', (6)
which implies that
9 s 27
’sz"lo s f1’ <107 )
Let Ty= 240" —1, then I}, # 0. I T; = 0, then a" = 1% ¢ (
thus we have 1059“62 (1+2\”@)n :f+2‘3;‘/§, where f,¢ € Z,f > 0,g > 0, this implies
]Os+t62”7
that /5= 9Tf € Q, which is impossible. According to Lemma 1, we take [ =3,

v = %,’)/2 =w,v3=10and by = 1,bp = n,b3 = —s — t. Thus, we have L = Q(«),dy, = [L : Q] = 2. Note
that h(y1) = h(2) <log9, h(72) = Lloga, h(v3) =1ogl0. Thus, we can take A; = 2log9, A, = 0.5,
Az = 4.8. Note that B = max{|b;|, |b2], |b3|,3} = max{1,n,s+t,3} = n. Hence, we get

| Ty |> exp(—Cq(1+logn)), (8)
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where C; = 1.025 x 10'3. Thus from (7) and (8) , we can get
slogl0 < Cq(1+ logn) + log27. 9)

We rewrite Equation (3), then we get

n €10° —(c—d)
9

« .10

ﬁ”+‘;’<zx—”+1<z. (10)

It follows that
c10° — (¢ — d)

9

ai’l

-zx‘”-lOt—l‘ < 2 (11)

LetTy = S0 ed)  y=n. 10t — 1, then T # 0. If Ty = 0, then o = L4 .10t € Q, which is
false. According to Lemma 1, we take | = 3,71 = w,yz =wa,v3=10and by =1,b, = —n, b3 =
t. Thus, we have L = Q(«),dr, = [L : Q] = 2. From (9), we can get

h(v1) < h(c10° — (c —d)) + h(9)
< 3log9 + slog10 + log?2
< C1(1 + logn) + 1og27 + 3log9 + log?2
<1.03-10" - (1 +logn),

(12)

and we have h(y;) = lloguc,h('yg,) = log10. Thus, we can take A; = 2.06 - 1013 - (1 + logn), Ay = 0.5,
Az = 4.8. Note that B = max{|b1|, |b2|, |b3],3} = max{1,n,t,3} = n. Hence, we get

| Ty |> exp(—Ca(1 + logn)?), (13)

where C, = 4.8 x 10?°. Thus from (11) and (13) , we can get
nloga < Co(1+ logn)? + log2, (14)

this implies that n < 4.8 x 10%. Hence we can conclude that

n+5.8

nTY.o L1029
178 < 1.01-10.

s+t <
To sum up, we have the lemma as follows.
Lemma 4. If (n,c,d,s,t) is a solution in non-negative integers of Equation (1), with c,d € {0,1,...,9},

c#dandc >0, then
s+t<n<48-10¥,s++t<1.01-10%.

3.2. Reducing the Bound on n

We use the Lemmas 2 and 3 to reduce the bound for n. Let
9
Aq = (s + t)logl0 — nloga — logz.

From (7), we conclude that
‘e_Al - 1‘ <= (15)
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If s > 2, then [e™ — 1| < % < %, which implies that % < e M < % If Ay > 0,
then0 < A; <eM —1=eM(1—e ™)< 2 IfA; <0, then0 < [Aq] <elMl—1=eM 1< 22,
In any case, it is always holds true 0 < |A;| < £, which implies

54
logl0 0 log? Toga
loga loga 105

0<|(s+¢) (16)

log10
logn

The continued fraction of is [ag, ay,a2,a3,a4,...] = [4,1,3,1,1,1,6,...],and let % be its kth

log10
loga

convergent. Note that s + ¢ < 1.01 - 102 by Lemma 4. It is easy to see that is irrational. In fact,

if lﬁ)ggf = S(p,q € Zand p > 0,9 > 0,gcd(p,q) = 1), then a? = 107 € Q, which is an absurdity.
Forallc € {1,...,8}, according to (16) and Lemma 2, we take M = 1.01 - 10% and g¢p > 6M, hence we

get the minimum value of € is 0.061483. .. and s < 34. If c = 9, from (16), we get

log10 li
. ogu
O<‘(s+t) o ~"| < 10 (17)
According to Lemma 3, we take M = 1.01-10%® and gq¢ > M, hence we get
ay; :=max{a; :i=0,1,...,60} = 106 and we have
log10 1 1
t — . 18
(s+ )logtx ”‘ Z lam12)(s 1) ~ 108-1.01-109 (18)
Thus, from (17) and (18), we get
54
(R 3
108 -1.01 - 10% 1087
this leads to s < 34. So we always have s < 34.
et 10° d
Ay = tlogl0 — nloga + log$.
From (11) and n > 1000, we conclude that
2 1
- 1’ Loz 1
e < <3 (19)

which implies that + < e < 3. If Ay > 0, then 0 < Ay < e —1 < 2. If Ay < O,
then0 < [Ap| < e —1=e¢"M(1—eM) < 4. Inany case, since 0 < |Ay| < 4, thus we have

c10°—(c—d)

log10 " logf loga

an’

logu logu

0< |t < (20)

wheres <33,c€{1,...,9}andd € {0,1,...,9}. For inequality (20), we consider the following two
cases: if (s,c,d) # (1,1,0), according to (20) and Lemma 2, we take M = 1.01 x 10%° and g¢p > 6M,
hence we obtain 25 negative values of € , the minimum value in the values of positive € is 0.00004477 . . .
and n < 171. For the values of (s, ¢, d) corresponding to the 25 negative values of € , we take g43 > 6M,
according to (20) and Lemma 2, we get the minimum value in the values of € is 0.005613. .. and
n < 168.1If (s,c,d) = (1,1,0), from (20), we get

(21)
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According to Lemma 3, we take M = 1.01-10%” and gq¢ > M, hence we get
ay :=max{a; :i=0,1,...,60} = 106 and we have

logl0

" 1 1
loga (ap+2)

f~ 108-1.01-108°

‘t (22)

Thus, from (21) and (22), we get

4
1 loga

108-1.01-108 = an’

which leads to n < 153. In summary, we have n < 171. This contradicts the assumption n > 1000.
Finally, we search for the solutions to (1) in the range n < 1000 by applying a program written in
Mathematica and we obtain the solutions (1, L,) € {(6,18),(7,29), (8,47),(9,76), (11,199), (12,322)}.
We complete the proof.

4. Conclusions and Future Research
For a fixed integer k > 2, let {Fr(lk) }n>2-k be the k—generalized Fibonacci sequence defined by
B = FY B, 4+ Y, with the initial values F') ) = F%) = = FY =0, Y =1
+ L9, 4L,

and {L,S")}nzz_k be the k—generalized Lucas sequence given by L,&k) = L;(1’(21
k k k k k
(,2;(,2) = L(,zk,g,) = = L(_i =0, L(()) = 2,L§) = 1. Suppose that

c,de€{0,1,...,9},c#d,c>0,s >1and t > 1, our aim is to solve the two Diophantine equations

with the initial values L

k)

FW —ccd-d (23)
M\,—/R’—f
s times t times
and
LW cdd (24)

N
s times t times

For k = 2 and k = 3, the Diophantine Equation (23) has been solved in [18] and [21], respectively.
In this paper, we solve the Diophantine Equation (24) for the case of k = 2. Our future research work is
to solve the Diophantine Equations (23) and (24) completely for the case of k > 3. In addition, for the
main Mathematica programs used in this paper, readers can refer to Appendix A.
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Appendix A. Mathematica Programs

We give the main Mathematica programs used in this paper as follows :

o n— V5. _ log[l0].
2 logla] 7

e  Generates a list of the first n terms in 's continued fraction representation:

ContinuedFraction[vy, n]
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e  The denominator of the nth(n = 0,1,2,...) convergent of 9’s continued fraction:
log[10]

1+/5

g[n_] := Module[{y =
log[~>=]

}, Last[Denominator[Convergents|y,n + 1]]]];

e  The function ||x|| which denotes the distance from x to the nearest integer:
cldist[x_, jd_] := Module[{}, Abs[N[Round[x] — x, jd]||;
e  Thenumber € := ||7g|| — M||ag|| in Lemma 2:

epsilon[t_,q_,M_,a_,jd_] := Module[{}, cldist[T % g, jd] — M * cldist[a * q, jd]];

9 9
e  The number 7 := —1122; in (16): tfc_] := _112§[[;]]’

logw . log[m]
e  The number 7 := —>t— in (20): 7s_,c_d_] := gl

e  The nth term of Lucas sequence Lj:

Lucas[n_] := Module[{a = ! +2\@,‘B -1 72\/5},Simplify[Expand[¢x” + "]
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