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Abstract: In this paper, we find all Lucas numbers written in the form c · · · cd · · · d, where c · · · cd · · · d
is the concatenation of two repdigits in base 10 with c, d ∈ {0, 1, . . . , 9}, c 6= d and c > 0.
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1. Introduction

Linear form in logarithms has many important applications in solving Diophantine
equations [1–4]. In 2002, by applying linear form in logarithms, A. Dujella and B. Jadrijević [1]
showed that the solutions to quartic Thue equations x4 − 4cx3y + (6c + 2)x2y2 + 4cxy3 + y4 = 1
are only (x, y) = (±1, 0) and (0,±1) for an integer c ≥ 3. Suppose that {Fn}n≥0 is the Fibonacci
sequence given by Fn+2 = Fn+1 + Fn, with initial values F0 = 0 and F1 = 1 and let {Ln}n≥0

be the Lucas sequence defined by Ln+2 = Ln+1 + Ln, where L0 = 2 and L1 = 1. In 2011,
F. Luca and R. Oyono [2] concluded that there is no solution (m, n, s) to the Diophantine equation
Fs

m + Fs
m+1 = Fn for integers m ≥ 2, n ≥ 1, s ≥ 3 by applying linear form in logarithms. There are

many papers in the literature which solve Diophantine equations related to Fibonacci numbers
and Lucas numbers [3–14]. In 2013, D. Marques and A. Togbé [3] found all solutions (n, a, b, c) to
the Diophantine equation Fn = 2a + 3b + 5c and Ln = 2a + 3b + 5c for integers n, a, b, c with
0 ≤ max{a, b} ≤ c. In 2019, B. D. Bitim [4] investigated the solutions (n, m, a) to the Diophantine
equation Ln − Lm = 2 · 3a for nonnegative integers n, m, a with n > m. Let p be a prime number and
max{a, b} ≥ 2, in 2009, F. Luca and P. Stǎnicǎ [5] concluded that there are only finitely many positive
integer solutions (n, p, a, b) to the Diophantine equation Fn = pa ± pb.

Assume that q ≥ 2 is an integer. A positive number n ∈ N is called a base q−repdigit if

n = c qt−1
q−1 , for some t ≥ 1 and c ∈ {1, 2, . . . , q − 1}. When q = 10, n is simply called a repdigit.

We use B1 · · · Bt(q) to express an integer’s base−q representation which is the concatenation of the
base−q representations of positive integers B1, . . . , Bt. We ignore writing q if q = 10. Then we can
denote the repdigit n by n = c · · · c︸ ︷︷ ︸

t times

and the concatenation of two repdigits in base 10 is c · · · c︸ ︷︷ ︸
s times

d · · · d︸ ︷︷ ︸
t times

,

where c, d ∈ {0, 1, . . . , 9}, c 6= d, c > 0, s ≥ 1 and t ≥ 1. There are many papers in the literature on
investigating Diophantine equations related to repdigits [8,9,11–21]. In 2000, Luca [15] proved that if
Fn = a 10m−1

9 and Ln = a 10m−1
9 for some a ∈ {0, 1, . . . , 9} and m ≥ 1, then n = 0, 1, 2, 3, 4, 5, 6, 10 and

n = 0, 1, 2, 3, 4, 5 respectively. In 2012, all repdigits in base 10 expressible as sums of three Fibonacci
numbers were found in [16]. In 2018, all repdigits in base 10 which are sums of four Fibonacci or Lucas
numbers were determined in [17]. In 2019, all solutions to the Diophantine equation Fn = a · · · a︸ ︷︷ ︸

m times

b · · · b︸ ︷︷ ︸
l times

were found in [18], where a, b ∈ {0, 1, . . . , 9} and a > 0. For the research of concatenations of
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two repdigits in balancing numbers, Padovan numbers and Tribonacci numbers, please refer to the
literature [19–21] respectively.

In this paper, we find all Lucas numbers which are concatenations of two repdigits. More precisely,
we have the following result.

Theorem 1. If
Ln = c · · · c︸ ︷︷ ︸

s times

d · · · d︸ ︷︷ ︸
t times

, (1)

with c, d ∈ {0, 1, . . . , 9}, c 6= d, c > 0, s ≥ 1 and t ≥ 1, then

(n, Ln) ∈ {(6, 18), (7, 29), (8, 47), (9, 76), (11, 199), (12, 322)}.

2. Preliminaries

Firstly, the Binet’s formula for Lucas sequence is

Ln = αn + βn, n ≥ 0,

where α = 1+
√

5
2 and β = 1−

√
5

2 . For all positive integers n, we have the following inequality

αn−1 ≤ Ln ≤ αn+1. (2)

Secondly, we recall the definition and properties for logarithmic height of an algebraic number.
Let η be an algebraic number of degree m and suppose that the minimal primitive polynomial of η is
f (X) := a0 ∏m

i=1(X− η(i)) ∈ Z[X] with a0 > 0. We give the logarithmic height of η by

h(η) :=
1
m

(
log a0 +

m

∑
i=1

log max{|η(i)|, 1}
)

.

In this paper, for any two integers a and b, we denote the greatest common divisor of a and b by
gcd(a, b). Specifically, h(η) = log max{|p|, q} when η = p

q ∈ Q with gcd(p, q) = 1 and q > 0. We have
the following properties of the logarithmic height h(·):

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηk) = |k|h(η) (k ∈ Z).

We need the following lemma to prove our theorem.

Lemma 1. (see [22]) Let dL be the degree of an algebraic number field L over Q and L ⊆ R. Let γ1, γ2, . . . , γl ∈ L
be non-zero elements and let b1, . . . , bl be rational integers. If Γ := γb1

1 · · ·γ
bl
l − 1 6= 0, then

|Γ| ≥ exp(−1.4 · 30l+3l4.5d2
L(1 + logdL)(1 + logB)A1 · · · Al),

where Aj are real numbers such that

Aj ≥ max{dLh(γj), |logγj|, 0.16}

for j = 1, . . . , l and B ≥ max{|b1|, . . . , |bl |, 3}.

Thirdly, we need the following Lemma 2 and Lemma 3 to reduce some large upper bounds on the
variables in the course of our calculations.
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Lemma 2. (see [23]) Let M be a positive integer and let p
q be a convergent of the continued fraction of the

irrational number α such that q > 6M, and let A, B, τ be some real numbers with A > 0 and B > 1.
Let ε := ‖τq‖ −M‖αq‖, where ‖ · ‖ denotes the distance from the nearest integer. If ε > 0, then there exists
no solution to the inequality

0 < |uα− v + τ| < AB−ω

in positive integers u, v, and ω with u ≤ M and w ≥ log(Aq/ε)
logB .

Lemma 3. (see [24]) Let τ be an irrational number, M be a positive integer and pk
qk
(k = 0, 1, 2, . . .) be all

the convergents of the continued fraction [a0, a1, . . .] of τ. Let N be such that qN > M. Then putting
aM := max{ai : i = 0, 1, . . . , N}, the inequality

|mτ − n| > 1
(aM + 2)m

holds for all pairs (n, m) of integers with 0 < m < M.

3. Proof of Theorem 1

3.1. Bounding n

According to (1), we get
Ln = c · · · c︸ ︷︷ ︸

s times

d · · · d︸ ︷︷ ︸
t times

= c · · · c︸ ︷︷ ︸
s times

· 10t + d · · · d︸ ︷︷ ︸
t times

=
1
9
(c10s+t − (c− d)10t − d).

(3)

Suppose that n > 1000. From inequality (2), we can get αn−1 ≤ Ln < 10s+t and
10s+t−1 ≤ Ln ≤ αn+1, which implies that

(s + t)log10− log10− logα ≤ nlogα < (s + t)log10 + logα. (4)

Thus, we can get
4.78(s + t)− 5.8 < n < 4.79(s + t) + 1. (5)

From (5), we get s + t > n−1
4.79 > 208 and n > s + t. According to (3) and Binet’s formulae for

Lucas sequences, we get

|9αn − c10s+t| = | − 9βn − ((c− d)10t + d)| ≤ 9α−n + 9 · 10t + 9 < 27 · 10t, (6)

which implies that ∣∣∣∣9c αn10−s−t − 1
∣∣∣∣ < 27

10s . (7)

Let Γ1:= 9
c αn10−s−t − 1, then Γ1 6= 0. If Γ1 = 0, then αn = 10s+tc

9 ∈ Q,

thus we have 10s+tc
9 = (1+

√
5)n

2n = f+g
√

5
2n , where f , g ∈ Z, f > 0, g > 0, this implies

that
√

5 =
10s+tc2n

9 − f
g ∈ Q, which is impossible. According to Lemma 1, we take l = 3,

γ1 = 9
c , γ2 = α, γ3 = 10 and b1 = 1, b2 = n, b3 = −s− t. Thus, we have L = Q(α), dL = [L : Q] = 2. Note

that h(γ1) = h(9
c ) ≤ log9, h(γ2) =

1
2 logα, h(γ3) = log10. Thus, we can take A1 = 2log9, A2 = 0.5,

A3 = 4.8. Note that B = max{|b1|, |b2|, |b3|, 3} = max{1, n, s + t, 3} = n. Hence, we get

| Γ1 |> exp(−C1(1 + logn)), (8)
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where C1 = 1.025× 1013. Thus from (7) and (8) , we can get

slog10 < C1(1 + logn) + log27. (9)

We rewrite Equation (3), then we get∣∣∣∣αn − c10s − (c− d)
9

· 10t
∣∣∣∣ = ∣∣∣∣βn +

d
9

∣∣∣∣ ≤ α−n + 1 < 2. (10)

It follows that ∣∣∣∣ c10s − (c− d)
9

· α−n · 10t − 1
∣∣∣∣ < 2

αn . (11)

Let Γ2 := c10s−(c−d)
9 · α−n · 10t − 1, then Γ2 6= 0. If Γ2 = 0, then αn = c10s−(c−d)

9 · 10t ∈ Q, which is

false. According to Lemma 1, we take l = 3,γ1 = c10s−(c−d)
9 , γ2 = α, γ3 = 10 and b1 = 1, b2 = −n, b3 =

t. Thus, we have L = Q(α), dL = [L : Q] = 2. From (9), we can get

h(γ1) ≤ h(c10s − (c− d)) + h(9)

≤ 3log9 + slog10 + log2

≤ C1(1 + logn) + log27 + 3log9 + log2

≤ 1.03 · 1013 · (1 + logn),

(12)

and we have h(γ2) =
1
2 logα, h(γ3) = log10. Thus, we can take A1 = 2.06 · 1013 · (1 + logn), A2 = 0.5,

A3 = 4.8. Note that B = max{|b1|, |b2|, |b3|, 3} = max{1, n, t, 3} = n. Hence, we get

| Γ2 |> exp(−C2(1 + logn)2), (13)

where C2 = 4.8× 1025. Thus from (11) and (13) , we can get

nlogα < C2(1 + logn)2 + log2, (14)

this implies that n < 4.8× 1029. Hence we can conclude that

s + t <
n + 5.8

4.78
< 1.01 · 1029.

To sum up, we have the lemma as follows.

Lemma 4. If (n, c, d, s, t) is a solution in non-negative integers of Equation (1), with c, d ∈ {0, 1, . . . , 9},
c 6= d and c > 0, then

s + t < n < 4.8 · 1029, s + t < 1.01 · 1029.

3.2. Reducing the Bound on n

We use the Lemmas 2 and 3 to reduce the bound for n. Let

Λ1 := (s + t)log10− nlogα− log
9
c

.

From (7), we conclude that ∣∣∣e−Λ1 − 1
∣∣∣ < 27

10s . (15)
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If s ≥ 2, then |e−Λ1 − 1| < 27
10s < 1

2 , which implies that 1
2 < e−Λ1 < 3

2 . If Λ1 > 0,
then 0 < Λ1 < eΛ1 − 1 = eΛ1(1− e−Λ1) < 54

10s . If Λ1 < 0, then 0 < |Λ1| < e|Λ1| − 1 = e−Λ1 − 1 < 27
10s .

In any case, it is always holds true 0 < |Λ1| < 54
10s , which implies

0 <

∣∣∣∣∣(s + t)
log10
logα

− n−
log 9

c
logα

∣∣∣∣∣ <
54

logα

10s . (16)

The continued fraction of log10
logα is [a0, a1, a2, a3, a4, . . . ] = [4, 1, 3, 1, 1, 1, 6, . . . ], and let pk

qk
be its kth

convergent. Note that s + t < 1.01 · 1029 by Lemma 4. It is easy to see that log10
logα is irrational. In fact,

if log10
logα = p

q (p, q ∈ Z and p > 0, q > 0, gcd(p, q) = 1), then αp = 10q ∈ Q, which is an absurdity.

For all c ∈ {1, . . . , 8}, according to (16) and Lemma 2, we take M = 1.01 · 1029 and q60 > 6M, hence we
get the minimum value of ε is 0.061483 . . . and s < 34. If c = 9, from (16), we get

0 <

∣∣∣∣(s + t)
log10
logα

− n
∣∣∣∣ < 54

logα

10s . (17)

According to Lemma 3, we take M = 1.01 · 1029 and q60 > M, hence we get
aM := max{ai : i = 0, 1, . . . , 60} = 106 and we have∣∣∣∣(s + t)

log10
logα

− n
∣∣∣∣ > 1

(aM + 2)(s + t)
>

1
108 · 1.01 · 1029 . (18)

Thus, from (17) and (18), we get

1
108 · 1.01 · 1029 <

54
logα

10s ,

this leads to s < 34. So we always have s < 34.
Let

Λ2 := tlog10− nlogα + log
c10s − (c− d)

9
.

From (11) and n > 1000, we conclude that∣∣∣eΛ2 − 1
∣∣∣ < 2

αn <
1
2

, (19)

which implies that 1
2 < eΛ2 < 3

2 . If Λ2 > 0, then 0 < Λ2 < eΛ2 − 1 < 2
αn . If Λ2 < 0,

then 0 < |Λ2| < e−Λ2 − 1 = e−Λ2(1− eΛ2) < 4
αn . In any case, since 0 < |Λ2| < 4

αn , thus we have

0 <

∣∣∣∣∣t log10
logα

− n +
log c10s−(c−d)

9
logα

∣∣∣∣∣ <
4

logα

αn , (20)

where s ≤ 33, c ∈ {1, . . . , 9} and d ∈ {0, 1, . . . , 9}. For inequality (20), we consider the following two
cases: if (s, c, d) 6= (1, 1, 0), according to (20) and Lemma 2, we take M = 1.01× 1029 and q60 > 6M,
hence we obtain 25 negative values of ε , the minimum value in the values of positive ε is 0.00004477 . . .
and n < 171. For the values of (s, c, d) corresponding to the 25 negative values of ε , we take q63 > 6M,
according to (20) and Lemma 2, we get the minimum value in the values of ε is 0.005613 . . . and
n < 168. If (s, c, d) = (1, 1, 0), from (20), we get

0 <

∣∣∣∣t log10
logα

− n
∣∣∣∣ < 4

logα

αn . (21)
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According to Lemma 3, we take M = 1.01 · 1029 and q60 > M, hence we get
aM := max{ai : i = 0, 1, . . . , 60} = 106 and we have∣∣∣∣t log10

logα
− n

∣∣∣∣ > 1
(aM + 2)t

>
1

108 · 1.01 · 1029 . (22)

Thus, from (21) and (22), we get

1
108 · 1.01 · 1029 <

4
logα

αn ,

which leads to n < 153. In summary, we have n < 171. This contradicts the assumption n > 1000.
Finally, we search for the solutions to (1) in the range n ≤ 1000 by applying a program written in
Mathematica and we obtain the solutions (n, Ln) ∈ {(6, 18), (7, 29), (8, 47), (9, 76), (11, 199), (12, 322)}.
We complete the proof.

4. Conclusions and Future Research

For a fixed integer k ≥ 2, let {F(k)
n }n≥2−k be the k−generalized Fibonacci sequence defined by

F(k)
n = F(k)

n−1 + F(k)
n−2 + · · ·+ F(k)

n−k with the initial values F(k)
−(k−2) = F(k)

−(k−3) = · · · = F(k)
0 = 0, F(k)

1 = 1

and {L(k)
n }n≥2−k be the k−generalized Lucas sequence given by L(k)

n = L(k)
n−1 + L(k)

n−2 + · · · + L(k)
n−k

with the initial values L(k)
−(k−2) = L(k)

−(k−3) = · · · = L(k)
−1 = 0, L(k)

0 = 2, L(k)
1 = 1. Suppose that

c, d ∈ {0, 1, . . . , 9}, c 6= d, c > 0, s ≥ 1 and t ≥ 1, our aim is to solve the two Diophantine equations

F(k)
n = c · · · c︸ ︷︷ ︸

s times

d · · · d︸ ︷︷ ︸
t times

(23)

and
L(k)

n = c · · · c︸ ︷︷ ︸
s times

d · · · d︸ ︷︷ ︸
t times

. (24)

For k = 2 and k = 3, the Diophantine Equation (23) has been solved in [18] and [21], respectively.
In this paper, we solve the Diophantine Equation (24) for the case of k = 2. Our future research work is
to solve the Diophantine Equations (23) and (24) completely for the case of k ≥ 3. In addition, for the
main Mathematica programs used in this paper, readers can refer to Appendix A.
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Appendix A. Mathematica Programs

We give the main Mathematica programs used in this paper as follows :

• α = 1+
√

5
2 ; γ =

log[10]
log[α] ;

• Generates a list of the first n terms in γ′s continued fraction representation:

ContinuedFraction[γ, n]
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• The denominator of the nth(n = 0, 1, 2, . . .) convergent of γ′s continued fraction:

q[n ] := Module[{γ =
log[10]

log[ 1+
√

5
2 ]
}, Last[Denominator[Convergents[γ, n + 1]]]];

• The function ‖x‖ which denotes the distance from x to the nearest integer:

cldist[x , jd ] := Module[{}, Abs[N[Round[x]− x, jd]]];

• The number ε := ‖τq‖ −M‖αq‖ in Lemma 2:

epsilon[τ , q , M , α , jd ] := Module[{}, cldist[τ ∗ q, jd]−M ∗ cldist[α ∗ q, jd]];

• The number τ := − log 9
c

logα in (16): τ[c ] := − log[ 9
c ]

log[α] ;

• The number τ := log c10s−(c−d)
9

logα in (20): τ[s , c , d ] := log[ c10s−(c−d)
9 ]

log[α] ;
• The nth term of Lucas sequence Ln:

Lucas[n ] := Module[{α =
1 +
√

5
2

, β =
1−
√

5
2
}, Simpli f y[Expand[αn + βn]]];
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