# Almost Hermitian Identities

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Lemma**

**1.**

**Lemma**

**2.**

**Lemma**

**3.**

**Lemma**

**4.**

**Lemma**

**5.**

## 3. Almost Hermitian Identities

**Theorem**

**1.**

**Remark**

**1.**

**Proof.**

## 4. Applications

**Proposition**

**1.**

**Proof.**

**Remark**

**2.**

**Corollary**

**1.**

**Proof.**

**Remark**

**3.**

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Weil, A. Introduction à l’étude des Variétés Kählériennes; l’Institut de Mathématique de l’Université de Nancago: Hermann, Paris, 1958; Volume VI, p. 175. [Google Scholar]
- De Bartolomeis, P.; Tomassini, A. On formality of some symplectic manifolds. Intern. Math. Res. Not.
**2001**, 1287–1314. [Google Scholar] [CrossRef] - Tardini, N.; Tomassini, A. Differential operators on almost-Hermitian manifolds and harmonic forms. Complex Manifolds
**2020**, 7, 106–128. [Google Scholar] [CrossRef] - Cirici, J.; Wilson, S.O. Topological and geometric aspects of almost Kähler manifolds via harmonic theory. Sel. Math.
**2020**, 26, 35. [Google Scholar] [CrossRef] - Demailly, J.P. Sur l’identité de Bochner-Kodaira-Nakano en géométrie hermitienne. In Séminaire d’analyse P. Lelong-P. Dolbeault-H. Skoda, Années 1983/1984; Springer: Berlin, Germany, 1986; Volume 1198, pp. 88–97. [Google Scholar]
- Wilson, S.O. Harmonic symmetries for Hermitian manifolds. Proc. Am. Math. Soc.
**2020**, 148, 3039–3045. [Google Scholar] [CrossRef][Green Version] - Ohsawa, T. Isomorphism theorems for cohomology groups of weakly 1-complete manifolds. Publ. Res. Inst. Math. Sci.
**1982**, 18, 191–232. [Google Scholar] [CrossRef][Green Version] - Cirici, J.; Wilson, S. Dolbeault cohomology for almost complex manifolds. arXiv
**2018**, arXiv:1809.01416. [Google Scholar] - Feehan, P.M.N.; Leness, T.G. Virtual Morse theory, almost Hermitian manifolds, SO (3) monopoles, and applications to four-manifold topology. In preparation.
- Huybrechts, D. Complex Geometry; An Introduction; Springer: Berlin, Germany, 2005; pp. xii, 309. [Google Scholar]
- Hopf, E. Selected Works of Eberhard Hopf with Commentaries; Cathleen, S., Serrin, M.J.B., Sinai, Y.G., Eds.; American Mathematical Society: Providence, RI, USA, 2002; pp. xxiv, 386. [Google Scholar]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cirici, J.; Wilson, S.O.
Almost Hermitian Identities. *Mathematics* **2020**, *8*, 1357.
https://doi.org/10.3390/math8081357

**AMA Style**

Cirici J, Wilson SO.
Almost Hermitian Identities. *Mathematics*. 2020; 8(8):1357.
https://doi.org/10.3390/math8081357

**Chicago/Turabian Style**

Cirici, Joana, and Scott O. Wilson.
2020. "Almost Hermitian Identities" *Mathematics* 8, no. 8: 1357.
https://doi.org/10.3390/math8081357