On the Quartic Residues and Their New Distribution Properties
Abstract
:1. Introduction
2. Several Lemmas
3. Proofs of the Theorems
4. Conclusions
- (1).
- Whether there exists an exact computing formula for ?
- (2).
- What is the residue of ?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, Z.H. Cubic congruences and sums involving . Int. J. Number Theory 2016, 12, 143–164. [Google Scholar] [CrossRef]
- Sun, Z.H. Quartic residues and sums involving . Taiwan. J. Math. 2015, 19, 803–818. [Google Scholar] [CrossRef]
- Sun, Z.H. Cubic residues and binary quadratic forms. J. Number Theory 2007, 124, 62–104. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.H. Quartic residues and binary quadratic forms. J. Number Theory 2005, 113, 10–52. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.H. Supplements to the theory of quartic residues. Acta Arith. 2001, 97, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.T.; Lv, X.X. The quadratic residues and some of their new distribution properties. Symmetry 2020, 12, 421. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.W.; Ringerse, C.J. Lower bound for least quadratic non-residues. In Aanlytic Number Theory: Proceedings of a Conference in Honor of P. T. Bateman; Book Series: Progress in Mathematics; Birkhäuser: Boston, MA, USA, 1990; Volume 85, pp. 269–309. [Google Scholar]
- Peralta, R. On the distribution of quadratic residues and non-residues nodulo a prime number. Math. Comput. 1992, 58, 433–440. [Google Scholar] [CrossRef]
- Wright, S. Quadratic residues and non-residues in arithmetic progression. J. Number Theory 2013, 133, 2398–2430. [Google Scholar] [CrossRef] [Green Version]
- Kohnen, W. An elementary proof in the theory of quadratic residues. Bull. Korean Math. Soc. 2008, 45, 273–275. [Google Scholar] [CrossRef] [Green Version]
- Hummel, P. On consecutive quadratic non-residues: A conjecture of Issai Schur. J. Number Theory 2003, 103, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Garaev, M.Z. A note on the least quadratic non-residue of the integer-sequences. Bull. Aust. Math. Soc. 2003, 68, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schinzel, A. Primitive roots and quadratic non-residues. Acta Arith. 2011, 149, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Yuk-Kam, L.; Jie, W. On the least quadratic non-residue. Int. J. Number Theory 2008, 4, 423–435. [Google Scholar]
- Dummit, D.S.; Dummit, E.P.; Kisilevsky, H. Characterizations of quadratic, cubic, and quartic residue matrices. J. Number Theory 2016, 168, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Xing, D.S.; Cao, Z.F.; Dong, X.L. Identity based signature scheme based on cubic residues. Sci.-China-Inf. Sci. 2011, 54, 2001–2012. [Google Scholar] [CrossRef] [Green Version]
- Su, W.L.; Li, Q.; Luo, H.P. Lower bounds of Ramsey numbers based on cubic residues. Discret. Math. 2002, 250, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.J.; Gu, J. Application of quartic residue character theory to the Diophantine equation a(x) + b(y) = c(z). Bull. Math. Soc. Sci. Math. Roum. 2019, 62, 133–139. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Zhang, W.P.; Li, H.L. Elementary Number Theory; Shaanxi Normal University Press: Xi’an, China, 2013. [Google Scholar]
- Chen, Z.Y.; Zhang, W.P. On the fourth-order linear recurrence formula related to classical Gauss sums. Open Math. 2017, 15, 1251–1255. [Google Scholar]
- Weil, A. On some exponential sums. Proc. Natl. Acad. Sci. USA 1948, 34, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgain, J.; Garaev, M.Z.; Konyagin, S.V.; Shparlinski, I.E. On the hidden shifted power problem. Siam J. Comput. 2012, 41, 1524–1557. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Zhang, J. On the Quartic Residues and Their New Distribution Properties. Mathematics 2020, 8, 1337. https://doi.org/10.3390/math8081337
Su J, Zhang J. On the Quartic Residues and Their New Distribution Properties. Mathematics. 2020; 8(8):1337. https://doi.org/10.3390/math8081337
Chicago/Turabian StyleSu, Juanli, and Jiafan Zhang. 2020. "On the Quartic Residues and Their New Distribution Properties" Mathematics 8, no. 8: 1337. https://doi.org/10.3390/math8081337
APA StyleSu, J., & Zhang, J. (2020). On the Quartic Residues and Their New Distribution Properties. Mathematics, 8(8), 1337. https://doi.org/10.3390/math8081337