Strong Convergence of Mann’s Iteration Process in Banach Spaces
Abstract
:1. Introduction
- “” stands for the weak convergence of to x,
- “” stands for the strong convergence of to x,
- is the set of all weak accumulation points of the sequence .
2. Preliminaries
2.1. Uniform Convexity
2.2. Duality Maps
- (i)
- ,
- (ii)
- is continuous and strictly increasing, and
- (iii)
- .
2.3. Demiclosedness Principle for Nonexpansive Mappings
2.4. Accretive Operators
2.5. A Useful Lemma
3. Strong Convergence Analysis of Mann’s Iteration Process
3.1. Strong Convergence of Mann’s Algorithm
- (i)
- for each , the sequence is nonincreasing, and
- (ii)
- the sequence is nonincreasing.
3.2. Regularization
- (i)
- ,
- (ii)
- .
- (C1)
- ,
- (C2)
- ,
- (C3)
- ,
- (C4)
- .
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mann, W.R. Mean value methods in iteration. Proc. Amer. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Reich, S. Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 1979, 67, 274–276. [Google Scholar] [CrossRef] [Green Version]
- Genel, A.; Lindenstrauss, J. An example concerning fixed points. Israel J. Math. 1975, 22, 81–86. [Google Scholar] [CrossRef]
- Krasnoselski, M.A. Two remarks on the method of successive approximation. Uspehi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
- Gwinner, J. On the convergence of some iteration processes in uniformly convex Banach spaces. Proc. Amer. Math. Soc. 1978, 71, 29–35. [Google Scholar] [CrossRef]
- Kim, T.W.; Xu, H.K. Strong convergence of modified Mann iterations. Nonlinear Anal. 2005, 61, 51–60. [Google Scholar] [CrossRef]
- Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 2003, 279, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhou, H.; Liou, Y. Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings. J. Appl. Math. Comput. 2009, 29, 383–389. [Google Scholar] [CrossRef]
- Cioranescu, I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Xu, H.K. Inequalities in Banach spaces with applications. Nonlinear Anal. Theory Methods Appl. 1991, 16, 1127–1138. [Google Scholar] [CrossRef]
- Browder, F.E. Fixed point theorems for nonlinear semicontractive mappings in Banach spaces. Arch. Rational Mech. Anal. 1966, 21, 259–269. [Google Scholar] [CrossRef]
- Browder, F.E. Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. 1967, 100, 201–225. [Google Scholar] [CrossRef]
- Browder, F.E. Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces. Arch. Rational Mech. Anal. 1967, 24, 82–90. [Google Scholar] [CrossRef]
- Browder, F.E. Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces. In Proceedings of Symposia in Pure Mathematics; American Mathematical Society: Providence, RI, USA, 1976; Volume 18. [Google Scholar]
- Opial, Z. Weak convergence of the successive approximations for non expansive mappings in Banach spaces. Bull. Amer. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.K.; Kim, T.W.; Yin, X. Weak continuity of the normalized duality map. J. Nonlinear Convex Anal. 2014, 15, 595–604. [Google Scholar]
- Lim, T.C.; Xu, H.K. Fixed point theorems for asymptotically nonexpansive mappings. Nonlinear Anal. 1994, 22, 1345–1355. [Google Scholar] [CrossRef]
- Dominguez Benavides, T.; López Acedo, G.; Xu, H.K. Iterative solutions for zeros of accretive operators. Math. Nachr. 2003, 248–249, 62–71. [Google Scholar] [CrossRef]
- Brezis, H.; Sibony, M. Methodes d’approximation et d’iteration pour les operateurs monotones. Arch. Rational Mech. Anal. 1968, 28, 59–82. [Google Scholar] [CrossRef]
- López, G.; Martín-Márquez, V.; Xu, H.K. Perturbation techniques for nonexpansive mappings with applications. Nonlinear Anal. Real World Appl. 2009, 10, 2369–2383. [Google Scholar] [CrossRef]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. London Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Dotson, W.G. On the Mann iterative process. Trans. Amer. Math. Soc. 1970, 149, 65–73. [Google Scholar] [CrossRef]
- Borwein, J.; Reich, S.; Shafrir, I. Krasnoselskii-Mann iterations in normed spaces. Canad. Math. Bull. 1992, 35, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, S. Fixed points and iteration of a nonexpansive mapping in a Banach space. Proc. Amer. Math. Soc. 1976, 59, 65–71. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.-K.; Altwaijry, N.; Chebbi, S. Strong Convergence of Mann’s Iteration Process in Banach Spaces. Mathematics 2020, 8, 954. https://doi.org/10.3390/math8060954
Xu H-K, Altwaijry N, Chebbi S. Strong Convergence of Mann’s Iteration Process in Banach Spaces. Mathematics. 2020; 8(6):954. https://doi.org/10.3390/math8060954
Chicago/Turabian StyleXu, Hong-Kun, Najla Altwaijry, and Souhail Chebbi. 2020. "Strong Convergence of Mann’s Iteration Process in Banach Spaces" Mathematics 8, no. 6: 954. https://doi.org/10.3390/math8060954
APA StyleXu, H. -K., Altwaijry, N., & Chebbi, S. (2020). Strong Convergence of Mann’s Iteration Process in Banach Spaces. Mathematics, 8(6), 954. https://doi.org/10.3390/math8060954