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Abstract: Mann’s iteration process for finding a fixed point of a nonexpansive mapping in a Banach
space is considered. This process is known to converge weakly in some class of infinite-dimensional
Banach spaces (e.g., uniformly convex Banach spaces with a Fréchet differentiable norm), but not
strongly even in a Hilbert space. Strong convergence is therefore a nontrivial problem. In this paper
we provide certain conditions either on the underlying space or on the mapping under investigation
so as to guarantee the strong convergence of Mann’s iteration process and its variants.
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1. Introduction

Let X be a real Banach space with norm ‖ · ‖, let C be a nonempty closed convex subset of X,
and let T : C → C be a nonexpansive mapping (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖ for x, y ∈ C). We use
Fix(T) to denote the set of fixed points of T; i.e., Fix(T) = {x ∈ C : Tx = x}. It is known that Fix(T)
is nonempty if X is uniformly convex and C is bounded. Mann’s iteration process [1], an averaged
iterative scheme, is used to find a point in Fix(T). This process generates a sequence {xn} via the
recursive process:

xn+1 = (1− tn)xn + tnTxn, n = 0, 1, · · · , (1)

where the initial point x0 ∈ C is arbitrary and (tn) ⊂ [0, 1]. It is known [2] that if X is uniformly
convex with a Fréchet differentiable norm, if Fix(T) is nonempty, and if ∑∞

n=0 tn(1− tn) = ∞, then the
sequence (xn) generated by (1) converges weakly to a point in Fix(T). However, the counterexample
in [3] shows that the algorithm (1) fails, in general, to converge strongly even in Hilbert space unless C
is compact [4]. Therefore, efforts have been made to study sufficient conditions to guarantee strong
convergence of Mann’s algorithm (1) without assuming compactness of C. For instance, Gwinner [5]
imposed the ϕ-accretiveness condition on I − T to prove strong convergence of (1) in a uniformly
convex Banach space. Some authors have made modifications of Mann’s iteration process in order to
get strong convergence (see, e.g., [6–8]).

In this paper we continue to study the strong convergence of Mann’s iteration process. We improve
Gwinner’s strongly convergent result ([5], Theorem 1) by removing the condition tn ≤ b with b ∈ (0, 1).
We also prove strong convergence of Mann’s iteration process in a reflexive Banach space with Opial’s
and Kadec-Klee properties when I − T is ϕ-accretive. A regularization method is introduced to
approximate a fixed point of T. This method implicitly yields a sequence of approximate solutions
and we shall prove (in Theorem 4) its strong convergence to a solution of a variational inequality.
Combining this regularization method with Mann’s method, we obtain a new iteration process (see (22))
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when the regularizer R = I− f with f a contraction. We will prove that this process converges strongly
in a Banach space whenever the sequence of approximate solutions of the implicit regularization
converges strongly.

We use the notation:

• “xn ⇀ x” stands for the weak convergence of (xn) to x,
• “xn → x” stands for the strong convergence of (xn) to x,
• ωw(xn) := {x : ∃xnk ⇀ x} is the set of all weak accumulation points of the sequence (xn).

2. Preliminaries

2.1. Uniform Convexity

Let X be a real Banach space with norm ‖ · ‖. Recall that the modulus of convexity of X is defined
as (cf. [9])

δX(ε) = inf
{

1−
∥∥∥∥ x + y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
, ε ∈ [0, 2].

We say that X is uniformly convex if

δX(ε) > 0 for all ε ∈ (0, 2].

Examples of uniformly convex Banach spaces include Hilbert spaces H and lp (and also Lp) spaces for
1 < p < ∞. As a matter of fact, the moduli of convexity of these spaces are

δH(ε) = 1−
√

1−
( ε

2

)2

and

δlp(ε) = δLp(ε)


= 1− p

√
1−

(
ε
2
)p if 2 ≤ p < ∞,

≥ 1−
√

1− (p− 1)
(

ε
2
)2 if 1 < p < 2.

The following inequality characterization of uniform convexity is convenient in application.

Proposition 1 ([10]). Let X be a uniformly convex Banach space. Then for each fixed real number r > 0,
there exists a strictly increasing continuous function h : [0, ∞)→ [0, ∞), h(0) = 0, satisfying the property:

‖tx + (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)h(‖x− y‖)

for all x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r, and 0 ≤ t ≤ 1.

Recall that a Banach space X is said to satisfy the Kadec-Klee property (also known as property
(H)) if the (sequential) weak and strong topologies on the unit sphere coincide; equivalently, given any
sequence {un} and a point u in X, the following implication holds:

(un → u weakly and ‖un‖ → ‖u‖) =⇒ un → u strongly.

Every uniformly convex Banach space satisfies the Kadec-Klee property.

2.2. Duality Maps

Let X be a real Banach space with norm ‖ · ‖. The notion of general duality maps on X was
introduced by Browder [11–14]. By a gauge we mean a function µ : R+ → R+ satisfying the properties:
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(i) µ(0) = 0,
(ii) µ is continuous and strictly increasing, and

(iii) lim
t→∞

µ(t) = ∞.

Associated with a gauge µ is the duality map Jµ : X → X∗ ([12]) defined by

Jµ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖ · ‖x∗‖, µ(‖x‖) = ‖x∗‖}. (2)

A special case is given by choosing the gauge µ(t) = tp−1 for t ≥ 0, where 1 < p < ∞. In this case the
corresponding duality map, which is denoted by Jp and referred to as the generalized duality map of
order p of X, is given by

Jp(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1}. (3)

In particular, we denote J for J2 and call it the normalized duality map. In more detail, J is defined by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}. (4)

For a Hilbert space H, its normalized duality map is identified with the identity map I (with the dual
space H∗ being identified with H through the Riesz canonical embedding).

Recall that a Banach space X is said to have a (sequentially) weakly continuous duality map if,
for some gauge µ, the duality map Jµ : X → X∗ is (sequentially) continuous when X is endowed with
the weak topology and the dual space X∗ endowed with the weak-star topology. It is known that,
for 1 < p < ∞ (p 6= 2), the sequence space `p has a sequentially weakly continuous duality map Jp;
while the function space Lp does not [15]. However, the normalized duality map J of `p (p 6= 2) is not
weakly continuous [16], Proposition 3.2.

Proposition 2. [17] Assume a Banach space X has a weakly continuous duality map Jµ for some gauge µ.
If (un) is a sequence in X weakly convergent to a point u, then we have

lim sup
n→∞

Ψ(‖un − v‖) = lim sup
n→∞

Ψ(‖un − u‖) + Ψ(‖u− v‖), v ∈ X, (5)

where Ψ is defined by Ψ(t) =
∫ t

0 µ(s)ds, t ≥ 0. In particular, X satisfies the Opial property ([15]):

lim inf
n→∞

‖un − u‖ < lim inf
n→∞

‖un − v‖ ∀u 6= v ∈ X (6)

whenever (un) is a sequence in X weakly convergent to u.

2.3. Demiclosedness Principle for Nonexpansive Mappings

Let C be a nonempty closed convex subset of a Banach space X and let T : C → C be a
nonexpansive mapping. Recall that I − T is said to be demiclosed if the graph of I − T, G(I − T) :=
{(x, y) : x ∈ C, y = (I − T)x} is closed in the product space Xw × X, where Xw is endowed with the
weak topology. Equivalently, I − T is demiclosed if and only if the implication below holds:

((xn) ⊂ C, xn ⇀ x, xn − Txn → y) =⇒ x− Tx = y.

This is called the demiclosedness principle for nonexpansive mappings, which holds in the following
Banach spaces:

• Uniformly convex Banach spaces [12];
• Banach spaces satisfying Opial’s property [15], in particular, Banach spaces with a weakly

continuous duality map Jµ for some gauge µ.
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2.4. Accretive Operators

Let C be a nonempty closed convex subset of a Banach space X. Recall that an operator S : C → X
is said to be accretive (cf. [18]) if, for each x, y ∈ C,

〈Sx− Sy, J(x− y)〉 ≥ 0.

Here J : X → X∗ is the normalized duality map (or a selection in the case of multivalued).

Definition 1 ([5,19]). Let ϕ : [0, ∞) → [0, ∞) be a continuous, strictly increasing function with ϕ(0) = 0
and limt→∞ ϕ(t) = ∞. Then we say that an operator S : C → X is ϕ-accretive (or uniformly ϕ-accretive,
respectively) if

〈Sx− Sy, J(x− y)〉 ≥ [ϕ(‖x‖)− ϕ(‖y‖)] · (‖x‖ − ‖y‖) (7)

for all x, y ∈ C, or respectively,

〈Sx− Sy, J(x− y)〉 ≥ ϕ(‖x− y‖) · ‖x− y‖ (8)

for all x, y ∈ C, where J is the normalized duality map of X.

Notice that if S is ϕ-accretive, then the set of zeros of S, S−1(0) = {x ∈ C : Sx = 0}, consists of
at most one point. In fact, if Sx̂ = Sx̃ = 0, we must have [ϕ(‖x̂‖) − ϕ(‖x̃‖)] · (‖x̂‖ − ‖x̃‖) = 0.
This implies x̂ = x̃.

2.5. A Useful Lemma

The lemma below is helpful in proving strong convergence of a sequence (xn) to a point x in a
Banach space by proving convergence to zero of the real sequence (‖xn − x‖).

Lemma 1 ([20,21] Lemma 2.2). Assume (sn) is a sequence of nonnegative real numbers satisfying
the condition:

sn+1 ≤ (1− λn)sn + λnβn + δn, n ≥ 0, (9)

where (λn) and (δn) are sequences in (0,1) and (βn) is a sequence in R. Assume

(i) ∑∞
n=1 λn = ∞,

(ii) lim supn→∞ βn ≤ 0 (or ∑∞
n=1 λn|βn| < ∞),

(iii) ∑∞
n=1 δn < ∞.

Then limn→∞ sn = 0.

3. Strong Convergence Analysis of Mann’s Iteration Process

3.1. Strong Convergence of Mann’s Algorithm

Let X be a real Banach space, let C be a nonempty closed convex subset of X, and let T : C → C
be a nonexpansive mapping with a fixed point. We use Fix(T) to note the set of fixed points of T. It is
known that if X is strictly convex, then Fix(T) is convex. For finding a fixed point of T, Mann’s iterative
algorithm [1] (see also [22]) is often used. This algorithm generates a sequence (xn) as follows:

xn+1 = (1− tn)xn + tnTxn, n = 0, 1, 2, · · · , (10)

where the initial point x0 ∈ C is arbitrary, and tn ∈ [0, 1] for all n ≥ 0.
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Lemma 2. [23] In a Banach space X, let T : C → C be a nonexpansive mapping and let (xn) be a sequence
generated by Mann’s method (10). Then

(i) for each z ∈ Fix(T), the sequence {‖xn − z‖} is nonincreasing, and
(ii) the sequence {‖xn − Txn‖} is nonincreasing.

Consequently, both limn→∞ ‖xn − z‖ and limn→∞ ‖xn − Txn‖ exist.

We begin with a strong convergence result on the Mann algorithm (10), which improves ( [5],
Theorem 1) by removing the restriction of tn ≤ b with b ∈ (0, 1).

Theorem 1. Let X be a real uniformly convex Banach space, let C be a nonempty closed convex subset of X,
and let T be a nonexpansive self-mapping of C with Fix(T) 6= ∅. Suppose S := I − T is ϕ-accretive and (tn)

satisfies the divergence condition
∞

∑
n=0

tn(1− tn) = ∞. (11)

Then (xn) converges in norm to a fixed point of T.

Proof. First observe that the ϕ-accretiveness of S = I − T implies that T has a unique fixed
point, i.e., Fix(T) = {z} is singleton. Set r = ‖x0 − z‖. By Lemma 2(i), ‖xn − z‖ ≤ r for all n.
Applying Proposition 1(i), we get

‖xn+1 − z‖2 = ‖(1− tn)(xn − z) + tn(Txn − z)‖2

≤ (1− tn)‖xn − z‖2 + tn‖Txn − q‖2 − tn(1− tn)h(‖xn − Txn‖)
≤ ‖xn − q‖2 − tn(1− tn)h(‖xn − Txn‖).

It turns out that
tn(1− tn)h(‖xn − Txn‖) ≤ ‖xn − q‖2 − ‖xn+1 − z‖2.

Consequently,
∞

∑
n=0

tn(1− tn)h(‖xn − Txn‖) ≤ ‖x0 − z‖2 = r2 < ∞.

The divergence condition (11) together with Lemma 2(ii) implies that limn→∞ ‖xn − Txn‖ = 0. By the
demiclosedness principle of S = I − T, we have that ωw(xn) ⊂ Fix(T) = {z}. This proves that xn ⇀ z.

Now using the ϕ-accretiveness of S = I − T, we obtain

[ϕ(‖xn‖)− ϕ(‖z‖)] · (‖xn‖ − ‖z‖) ≤ 〈Sxn, J(xn − z)〉 ≤ r‖xn − Txn‖ → 0. (12)

It turns out that ‖xn‖ → ‖z‖. Therefore, the Kadec-Klee property of the uniform convexity of X implies
that xn → z. The proof is complete.

Remark 1. The conclusion of Theorem 1 remains true if the uniform convexity of X is weakened to strict
convexity together with the Kadec-Klee property, and if S = I − T is demiclosed.

Theorem 2. Let X be a reflexive Banach space satisfying Opial’s condition and the Kadec-Klee property, let C
be a nonempty closed convex subset of X, and let T be a nonexpansive self-mapping of C with Fix(T) 6= ∅.
Suppose S := I − T is ϕ-accretive and (tn) satisfies the conditions

tn ≤ b (for some b ∈ (0, 1)) and
∞

∑
n=0

tn = ∞. (13)

Then (xn) converges in norm to a fixed point of T.
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Proof. We sketch the proof here. Under the condition (13), we have by ([24], Lemma 2) that
xn − Txn → 0 strongly. Now Opial’s property together with the fact that limn→∞ ‖xn − z‖ exists
for every z ∈ Fix(T) [Lemma 2(i)] implies that the sequence {xn} converges weakly to a point z in
Fix(T). In the meanwhile, we still have (12) which implies ‖xn‖ → ‖z‖. Now the strong convergence
of {xn} to z follows from the Kadec-Klee property of X.

Remark 2. It is unclear if, in Theorem 2, the divergence condition (13) can be weakened to the divergence
condition (11). Alternatively, it is unknown whether ‖xn − Txn‖ → 0 holds true in a Banach space with
Opial’s condition, without the assumption that supn≥0 tn < 1. (Note: Ishikawa ([24], Lemma 2) requires
this assumption.)

3.2. Regularization

Finding a fixed point of a nonexpansive mapping T is equivalent to finding a zero of the accretive
operator S = I − T. Thus regularization methods may apply. In [5], Gwinner introduced the
regularization operator Sε := (1 − ε)(I − T) + εR, where ε ∈ (0, 1) is a regularization parameter
and R : C → X is a mapping which is referred to as regularizer. The following result on this
regularization was proved.

Theorem 3 ([5] Theorem 2). Let X be a uniformly convex Banach space, C a nonempty closed convex subset
of X, and T a nonexpansive self-mapping of C with Fix(T) 6= ∅. Assume R : C → X is a continuous, bounded,
uniformly ϕ-accretive operator. Assume the normalized duality map J : X → X∗ is weakly sequentially
continuous. Choose positive real numbers δn and εn ∈ (0, 1) such that

(i) limn→∞ εn = 0,
(ii) limn→∞(δn/εn) = 0.

If the approximate solutions ỹn ∈ C satisfy

‖(1− εn)(I − T)(ỹn) + εnR(ỹn)‖ ≤ δn, (14)

then the sequence {ỹn} converges strongly to a fixed point ẑ of T, which is uniquely determined by the
variational inequality:

〈R(ẑ), J(ẑ− z)〉 ≤ 0 ∀z ∈ Fix(T). (15)

Remark 3. The condition in Theorem 3 that the normalized duality map J : X → X∗ be weakly continuous is
quite restrictive because this condition rules out the applicability of Theorem 3 to the uniformly convex sequence
space `p (1 < p < ∞, p 6= 2) since the normalized duality map J of `p (1 < p < ∞, p 6= 2) fails to be weakly
continuous ([16], Proposition 3.2).Below we use the condition that X admits a weakly continuous duality map Jµ

for some gauge µ; as a result, our theorem applies to every `p space (1 < p < ∞) which has a weakly continuous
duality map Jµ with gauge µ(t) = tp−1 for t ≥ 0.

Our next result improves Theorem 3 (i.e., [5], Theorem 2) twofold: first we remove the uniform
convexity of the space X and secondly, we replace the normalized duality map J with a general
duality map Jµ for some gauge µ, the latter being more flexible in applications (such as `p spaces for
1 < p < ∞).

Theorem 4. Assume X is a reflexive Banach space with a weakly sequentially continuous duality map
Jµ : X → X∗ for some gauge µ, C a nonempty closed convex subset of X, and T : C → C a nonexpansive
mapping with Fix(T) 6= ∅. Assume R : C → X is a continuous, bounded, uniformly ϕ-accretive operator.
Assume δn and εn satisfy the conditions (i) and (ii) in Theorem 3. Then the sequence {ỹn} of approximate
solutions determined by (14) converges strongly to the unique solution ẑ of the variational inequality (15).
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Proof. First observe that, since the duality maps Jµ and J satisfy the relation

‖x‖Jµ(x) = µ(‖x‖)J(x), x ∈ X,

the uniform ϕ-accretiveness of R, (8), can equivalently be rephrased as

〈Sx− Sy, Jµ(x− y)〉 ≥ ϕ(‖x− y‖) · µ(‖x− y‖) ∀x, y ∈ C. (16)

Now set
βn := 〈(1− εn)(I − T)(ỹn) + εnR(ỹn), Jµ(ỹn − z)〉,

where z ∈ Fix(T). It turns out from (14) that

|βn| ≤ δnµ(‖ỹn − z‖).

Also, since T is nonexpansive (so that I − T is accretive), we have for z ∈ Fix(T)

βn = (1− εn)〈(I − T)(ỹn), Jµ(ỹn − z)〉+ εn〈R(ỹn), Jµ(ỹn − z)〉
≥ εn〈R(ỹn), Jµ(ỹn − z)〉

for 〈(I − T)(ỹn), Jµ(ỹn − z)〉 ≥ 0. It follows that

〈R(ỹn), Jµ(ỹn − z)〉 ≤ βn

εn
. (17)

Using (16) and (17), we get, for z ∈ Fix(T),

µ(‖ỹn − z‖)ϕ(‖ỹn − z‖) ≤ 〈R(ỹn)− R(z), Jµ(ỹn − z)〉
= 〈R(ỹn), Jµ(ỹn − z)〉 − 〈R(z), Jµ(ỹn − z)〉 (18)

≤ (βn/εn) + ‖R(z)‖µ(‖ỹn − z‖)
≤ γ + ‖R(z)‖µ(‖ỹn − z‖), γ := sup

n≥0
(βn/εn).

If µ(‖ỹn − z‖) ≥ γ, i.e., ‖ỹn − z‖ ≥ µ−1(γ), then it follows from the last relation that

ϕ(‖ỹn − z‖) ≤ γ

µ(‖ỹn − z‖) + ‖R(z)‖ ≤ 1 + ‖R(z)‖.

Consequently, we obtain

‖ỹn − z‖ ≤ max
{

µ−1(γ), ϕ−1(1 + ‖R(z)‖)
}
=: cz.

Hence, {ỹn} is bounded, and |βn| ≤ δnµ(cz) for all n. Now since R is a bounded operator, {R(ỹn)} is
also bounded. It then turns out from (14) that limn→∞ ‖ỹn − Tỹn‖ = 0. Since I − T is demiclosed,
ωw(ỹn) ⊂ Fix(T). Let ỹ ∈ ωw(ỹn) and {ỹnk} be a subsequence of {ỹn} weakly converging to
ỹ ∈ Fix(T). Substituting ỹ for z in (18) yields

µ(‖ỹnk − ỹ‖)ϕ(‖ỹnk − ỹ‖) ≤ (δnk /εnk )µ(cỹ)− 〈R(ỹ), Jµ(ỹnk − ỹ)〉.

Since (δnk /εnk ) → 0 and Jµ(ỹnk − ỹ) → 0 weakly, due to the weak continuity of the duality map
Jµ, the last relation ensures µ(‖ỹnk − ỹ‖)ϕ(‖ỹnk − ỹ‖) → 0, which in turns implies that ỹnk → ỹ
strongly. Returning to (17) via the subsequence {ỹnk} and using the continuity of R gives that
〈R(ỹ), Jµ(ỹ− z)〉 ≤ 0 for all z ∈ Fix(T). That is, ỹ is a solution to the variational inequality (15).
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It remains to show that (15) has a unique solution. To see this, we assume ẑ and z̃ both are solutions
of (15). We then have

〈R(ẑ), J(ẑ− z̃)〉 ≤ 0 and 〈R(z̃), J(z̃− ẑ)〉 ≤ 0.

Adding them up and making use of the uniform ϕ-accretiveness of R yields

0 ≥ 〈R(ẑ)− R(z̃), J(ẑ− z̃)〉 ≥ ϕ(‖ẑ− z̃‖) · ‖ẑ− z̃‖.

It follows immediately that ẑ = z̃ and the solution of the variational inequality (15) is unique.
Hence, we have verified that the sequence {ỹn} converges strongly to the unique solution of (15).

Take R to be of the form
R(x) = x− f (x), x ∈ C, (19)

where f : C → C is an α-contraction, with α ∈ [0, 1). Namely,

‖ f (x)− f (y)‖ ≤ α‖x− y‖ ∀x, y ∈ C.

Then it is easy to find that R is uniformly ϕ-accretive with ϕ(t) = (1− α)t for t ≥ 0 (namely, I − T is
strongly accretive):

〈x− y, R(x)− R(y)〉 ≥ (1− α)‖x− y‖2, x, y ∈ C.

Consequently, the following result is a direct consequence of Theorem 4.

Corollary 1. Assume X is a reflexive Banach space with a weakly sequentially continuous duality map
Jµ : X → X∗ for some gauge µ, C a nonempty closed convex subset of X, and T : C → C a nonexpansive
mapping with Fix(T) 6= ∅. Assume f : C → C is an α-contraction for some α ∈ [0, 1). Assume δn and εn

satisfy the conditions (i) and (ii) in Theorem 3. Then the sequence {ỹn} of approximate solutions determined by

‖ỹn − [(1− εn)T(ỹn) + εn f (ỹn)]‖ ≤ δn (20)

converges strongly to the unique solution ẑ of the variational inequality:

〈ẑ− f (ẑ), J(ẑ− z)〉 ≤ 0 ∀z ∈ Fix(T). (21)

Remark 4. Theorem 4 and Corollary 1 both are applicable to `p spaces for each 1 < p < ∞ since the generalized
duality map Jµ of `p with gauge µ(t) = tp−1 is weakly continuous; Gwinner’s theorem ([5], Theorem 2) however
is not applicable since the normalized duality map J of `p for 1 < p < ∞, p 6= 2 is not weakly continuous.

Applying Mann’s iteration method to the regularized operator (1 − ε)(I − T) + εR with the
regularizer R of form (19) leads to the iteration process [5], which we call regularized Mann
iteration method:

zn+1 = αn(1− εn)Tzn + αnεn f (zn) + (1− αn)zn, (22)

where the initial point z0 ∈ C is arbitrary, f : C → C is an α-contraction with α ∈ [0, 1), and
αn, εn ∈ (0, 1) for n ≥ 0.

The convergence of this algorithm depends on the convergence of the approximate scheme (20) as
shown below.

Theorem 5. Assume X is a Banach space, C a nonempty closed convex subset of X, and T : C → C
a nonexpansive mapping with Fix(T) 6= ∅. Assume R : C → C is an α-contraction with α ∈ [0, 1).
Assume (αn), (εn), and (δn) satisfy the conditions:

(C1) ∑∞
n=0 αnεn = ∞,

(C2) limn→∞
|εn−εn−1|

αnε2
n

= 0,
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(C3) limn→∞(δn/εn) = 0,
(C4) limn→∞

δn+δn−1
αnε2

n
= 0.

Assume the sequence {ỹn} determined by the approximate equation (20) converges strongly to the unique
solution ẑ of the variational inequality (21). Then the sequence {zn} generated by the iteration process (22) also
converges strongly to the same solution ẑ of (21).

Proof. We rewrite (20) as
ỹn = (1− εn)T(ỹn) + εn f (ỹn) + en, (23)

where en is the error such that ‖en‖ ≤ δn for all n. It turns out from (23) that

‖ỹn+1 − ỹn‖ = ‖(1− εn+1)[T(ỹn+1)− T(ỹn)] + εn+1[ f (ỹn+1)− f (ỹn)]

+ (εn+1 − εn)[ f (ỹn)− T(ỹn)] + en+1 − en‖
≤ (1− (1− α)εn+1)‖ỹn+1 − ỹn‖+ β|εn+1 − εn|+ δn+1 + δn,

where β > 0 is a constant such that β ≥ ‖ f (ỹn)− T(ỹn)‖ for all n. This implies that

‖ỹn+1 − ỹn‖ ≤
β|εn+1 − εn|+ δn+1 + δn

(1− α)εn+1
. (24)

Using the definition (22) of zn+1, we obtain

‖zn+1 − ỹn‖ = ‖αn[(1− εn)Tzn + εn f (zn)− ỹn] + (1− αn)(zn − ỹn)‖
= ‖αn[(1− εn)(Tzn − Tỹn) + εn( f (zn)− f (ỹn))] + (1− αn)(zn − ỹn)− αnen‖
≤ αn[(1− εn)‖zn − ỹn‖+ αεn‖zn − ỹn‖] + (1− αn)‖zn − ỹn‖+ αn‖en‖
≤ (1− (1− α)αnεn)‖zn − ỹn‖+ αnδn

≤ (1− (1− α)αnεn)‖zn − ỹn−1‖+ ‖ỹn − ỹn−1‖+ αnδn. (25)

Substituting (24) into (25) yields, for n ≥ 1,

‖zn+1 − ỹn‖ ≤ (1− (1− α)αnεn)‖zn − ỹn−1‖+ γn, (26)

where

γn =
β|εn − εn−1|+ δn + δn−1

(1− α)εn
+ αnδn.

The conditions (C2)–(C4) assert that γn = o(αnεn). Noticing condition (C1), we can apply Lemma 1 to
Equation (26) to conclude ‖zn+1 − ỹn‖ → 0. Now since it is assumed that ỹn → z̃, the unique solution
of the variational inequality (21), it is also that zn → z̃. This finishes the proof.

Remark 5. It is not hard to find that the four conditions (C1)–(C4) in Theorem 5 are satisfied for the choices of
αn = (n + 1)−p, εn = (n + 1)−q, δn = (n + 1)−r for n ≥ 0, where p, q, r > 0 are such that p + q < 1 and
r > p + 2q.

Remark 6. To the best of our knowledge, it looks to be the first time in the literature to use the
approximate solutions ỹn to study strong convergence of the regularized Mann’s iteration process (22).
Previously, exact solutions yn were used (see, e.g., [5]). Here yn is the exact fixed point of the contraction
(1− εn)T(·) + εn f (·):

yn = (1− εn)T(yn) + εn f (yn).
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A key assumption in Theorem 5 is that the sequence {ỹn} be strongly convergent, which has
been proved in a reflexive Banach space with a weakly continuous duality map in Theorem 4.
Consequently, we have the following result.

Corollary 2. Assume X is a reflexive Banach space with a weakly sequentially continuous duality map
Jµ : X → X∗ for some gauge µ (in particular, X = `p for 1 < p < ∞), C a nonempty closed convex subset
of X, and T : C → C a nonexpansive mapping with Fix(T) 6= ∅. Assume f : C → C is an α-contraction for
some α ∈ [0, 1). Assume the sequence {ỹn} satisfies (20) and let {zn} be generated by the regularized iteration
process (22). Suppose αn, εn, δn satisfy the conditions (C1)-(C4) in Theorem 5. Then {zn} converges strongly
to the unique solution ẑ of the variational inequality (21).
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