A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems
Abstract
1. Introduction
2. Preliminaries and Assumptions
3. Mains Result
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agarwal, P.; Karimov, E.; Mamchuev, M.; Ruzhansky, M. On boundary-value problems for a partial differential equation with Caputo and Bessel operators. In Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science; Birkhauser: Cham, Switzerland, 2017; Volume 152, pp. 707–718. [Google Scholar]
- Atangana, A.; Hammouch, Z. Fractional calculus with power law: The cradle of our ancestors. Eur. Phys. J. Plus 2017, 134, 429. [Google Scholar] [CrossRef]
- Bai, C. Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem. Elect. J. Differ. Equat. 2012, 176, 1–9. [Google Scholar]
- Benson, D.; Wheatcraft, S.; Meerschaert, M. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000, 36, 1403–1412. [Google Scholar] [CrossRef]
- Benson, D.; Wheatcraft, S.; Meerschaert, M. The fractional-order governing equation of Levy motion. Water Resour. Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Boulaaras, S.; Bouizem, Y.; Guefaifia, R. Existence of positive solutions of (p(x), q(x))-Laplacian parabolic systems with right hand side defined as a multiplication of two separate functions. Math. Methods Appl. Sci. 2020, 43, 2615–2625. [Google Scholar] [CrossRef]
- Boulaaras, S.; Allahem, A. Existence of Positive Solutions of Nonlocal p(x)-Kirchhoff Evolutionary Systems via Sub-Super Solutions Concept. Symmetry 2019, 11, 253. [Google Scholar] [CrossRef]
- Boulaaras, S.; Guefaifia, R. Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters. Math. Methods Appl. Sci. 2018, 41, 5203–5210. [Google Scholar] [CrossRef]
- Diethelm, K.; Freed, A. On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity. In Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties; Keil, F., Mackens, W., Voss, H., Werther, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 217–224. [Google Scholar]
- Devi, J.; Lakshmikantham, V. Nonsmooth analysis and fractional differential equations. Nonlinear Anal. TMA 2009, 70, 4151–4157. [Google Scholar] [CrossRef]
- Erwin, V.; Roop, J. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 2006, 22, 58–76. [Google Scholar]
- Fix, G.; Roop, J. Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 2004, 48, 1017–1033. [Google Scholar] [CrossRef]
- Glockle, W.; Nonnenmacher, T. A fractional calculus approach of self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef]
- Guefaifia, R.; Boulaaras, S. Sub-super solutions method for elliptic systems involving (p1,…,pm) Laplacian operator. Math. Methods Appl. Sci. 2020, 43, 4191–4199. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Hammouch, Z. On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 16–20. [Google Scholar] [CrossRef]
- Kamache, F.; Guefaifia, R.; Boulaaras, S.; Alharbi, A. Existence of weak solutions for a new class of fractional p-Laplacian boundary value systems. Mathematics 2020, 8, 475. [Google Scholar] [CrossRef]
- Kirchner, J.; Feng, X.; Neal, C. Fractal streamchemistry and its implications for contaminant transport in catchments. Nature 2000, 403, 524–526. [Google Scholar] [CrossRef]
- Kıymaz, I.O.; Cetinkaya, A.; Agarwal, P. An extension of Caputo fractional derivative operator and its applications. J.Nonlinear Sci. Appl. 2016, 9, 3611–3621. [Google Scholar] [CrossRef]
- Torres, C.; Oliverio, D. Existence of three solution for fractional Hamiltonian system. J. Homepage 2017, 4, 51–58. [Google Scholar] [CrossRef]
- Zhang, S. Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 2010, 59, 1300–1309. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Li, Y. Existence of solutions for a class Of Fractional Hamiltonian Systems with impulsive effects. Fract. Differ. Calc. 2018, 8, 233–253. [Google Scholar] [CrossRef]
- Brézis, H.; Nirenberg, L. Remarks on finding critical points. Commun. Pure Appl. Math. 1991, 44, 939–963. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Rodriguez-Lopez, R.; Tersian, S. Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 1016–1038. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.; Guefaifia, R.; Boulaaras, S. A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems. Mathematics 2020, 8, 856. https://doi.org/10.3390/math8050856
Alharbi A, Guefaifia R, Boulaaras S. A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems. Mathematics. 2020; 8(5):856. https://doi.org/10.3390/math8050856
Chicago/Turabian StyleAlharbi, Asma, Rafik Guefaifia, and Salah Boulaaras. 2020. "A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems" Mathematics 8, no. 5: 856. https://doi.org/10.3390/math8050856
APA StyleAlharbi, A., Guefaifia, R., & Boulaaras, S. (2020). A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems. Mathematics, 8(5), 856. https://doi.org/10.3390/math8050856