A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems
Abstract
:1. Introduction
2. Preliminaries and Assumptions
3. Mains Result
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agarwal, P.; Karimov, E.; Mamchuev, M.; Ruzhansky, M. On boundary-value problems for a partial differential equation with Caputo and Bessel operators. In Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science; Birkhauser: Cham, Switzerland, 2017; Volume 152, pp. 707–718. [Google Scholar]
- Atangana, A.; Hammouch, Z. Fractional calculus with power law: The cradle of our ancestors. Eur. Phys. J. Plus 2017, 134, 429. [Google Scholar] [CrossRef]
- Bai, C. Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem. Elect. J. Differ. Equat. 2012, 176, 1–9. [Google Scholar]
- Benson, D.; Wheatcraft, S.; Meerschaert, M. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000, 36, 1403–1412. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.; Wheatcraft, S.; Meerschaert, M. The fractional-order governing equation of Levy motion. Water Resour. Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Boulaaras, S.; Bouizem, Y.; Guefaifia, R. Existence of positive solutions of (p(x), q(x))-Laplacian parabolic systems with right hand side defined as a multiplication of two separate functions. Math. Methods Appl. Sci. 2020, 43, 2615–2625. [Google Scholar] [CrossRef]
- Boulaaras, S.; Allahem, A. Existence of Positive Solutions of Nonlocal p(x)-Kirchhoff Evolutionary Systems via Sub-Super Solutions Concept. Symmetry 2019, 11, 253. [Google Scholar] [CrossRef] [Green Version]
- Boulaaras, S.; Guefaifia, R. Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters. Math. Methods Appl. Sci. 2018, 41, 5203–5210. [Google Scholar] [CrossRef]
- Diethelm, K.; Freed, A. On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity. In Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties; Keil, F., Mackens, W., Voss, H., Werther, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 217–224. [Google Scholar]
- Devi, J.; Lakshmikantham, V. Nonsmooth analysis and fractional differential equations. Nonlinear Anal. TMA 2009, 70, 4151–4157. [Google Scholar] [CrossRef]
- Erwin, V.; Roop, J. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 2006, 22, 58–76. [Google Scholar]
- Fix, G.; Roop, J. Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 2004, 48, 1017–1033. [Google Scholar] [CrossRef] [Green Version]
- Glockle, W.; Nonnenmacher, T. A fractional calculus approach of self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Guefaifia, R.; Boulaaras, S. Sub-super solutions method for elliptic systems involving (p1,…,pm) Laplacian operator. Math. Methods Appl. Sci. 2020, 43, 4191–4199. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Hammouch, Z. On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 16–20. [Google Scholar] [CrossRef]
- Kamache, F.; Guefaifia, R.; Boulaaras, S.; Alharbi, A. Existence of weak solutions for a new class of fractional p-Laplacian boundary value systems. Mathematics 2020, 8, 475. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, J.; Feng, X.; Neal, C. Fractal streamchemistry and its implications for contaminant transport in catchments. Nature 2000, 403, 524–526. [Google Scholar] [CrossRef]
- Kıymaz, I.O.; Cetinkaya, A.; Agarwal, P. An extension of Caputo fractional derivative operator and its applications. J.Nonlinear Sci. Appl. 2016, 9, 3611–3621. [Google Scholar] [CrossRef]
- Torres, C.; Oliverio, D. Existence of three solution for fractional Hamiltonian system. J. Homepage 2017, 4, 51–58. [Google Scholar] [CrossRef]
- Zhang, S. Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 2010, 59, 1300–1309. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, Y.; Li, Y. Existence of solutions for a class Of Fractional Hamiltonian Systems with impulsive effects. Fract. Differ. Calc. 2018, 8, 233–253. [Google Scholar] [CrossRef] [Green Version]
- Brézis, H.; Nirenberg, L. Remarks on finding critical points. Commun. Pure Appl. Math. 1991, 44, 939–963. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Rodriguez-Lopez, R.; Tersian, S. Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 1016–1038. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.; Guefaifia, R.; Boulaaras, S. A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems. Mathematics 2020, 8, 856. https://doi.org/10.3390/math8050856
Alharbi A, Guefaifia R, Boulaaras S. A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems. Mathematics. 2020; 8(5):856. https://doi.org/10.3390/math8050856
Chicago/Turabian StyleAlharbi, Asma, Rafik Guefaifia, and Salah Boulaaras. 2020. "A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems" Mathematics 8, no. 5: 856. https://doi.org/10.3390/math8050856
APA StyleAlharbi, A., Guefaifia, R., & Boulaaras, S. (2020). A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems. Mathematics, 8(5), 856. https://doi.org/10.3390/math8050856