Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces
Abstract
1. Introduction and Main Results
2. Preliminary Estimates and Function Spaces
2.1. Function Spaces
2.2. Linear Estimates
2.3. Trilinear Estimates
3. Proof of Theorem 1
3.1. Existence of Solution
3.2. The Uniqueness
3.3. Continuous Dependence of the Initial Data
4. Regularity of the Solution to Coupled System (3)
4.1. Gevrey- Regularity in Time
4.2. Failure of Gevrey-D Regularity in Time
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global well-posedness for KdV and modified KdV on and . J. Am. Math. Soc. 2003, 16, 705–749. [Google Scholar] [CrossRef]
- Kappeler, T.; Topalov, P. Global well-posedness of mKDV in L2(). Commun. Partial Differ. Equ. 2005, 30, 435–449. [Google Scholar] [CrossRef]
- Birnir, B.; Kenig, C.; Ponce, G.; Svanstedt, N.; Vega, L. On the well-posedness of the Initial Value Problem for the generalized Korteweg-de Vries and nonlinear Schrodinger equations. Lond. Math. Soc. 2 1996, 53, 551–559. [Google Scholar] [CrossRef]
- Boukarou, A.; Zennir, K.; Guerbati, K.; Georgiev, S.G. Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity. Rend. Circ. Mat. Palermo 2 2020. [Google Scholar] [CrossRef]
- Boukarou, A.; Zennir, K.; Guerbati, K.; Georgiev, S.G. Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili I equation in the analytic Bourgain spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 2020. [Google Scholar] [CrossRef]
- Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 1993, 3, 209–262. [Google Scholar] [CrossRef]
- Pelinovsky, E.N.; Shurgalina, E.G. Two-Solitons Interaction Within the Framework of the Modified Korteweg-de Vries Equation. Radiophys. Quantum Electron. 2015, 57, 737–744. [Google Scholar] [CrossRef]
- Slyunyaev, A.V. Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. J. Exp. Theor. Phys. 2001, 92, 529–534. [Google Scholar] [CrossRef]
- Carvajal, X.; Panthee, M. Sharp well-posedness for a coupled system of mKDV-type equations. J. Evol. Equ. 2019, 19, 1167–1197. [Google Scholar] [CrossRef]
- Kenig, C.E.; Ponce, G.; Vega, L. A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 1996, 9, 573–603. [Google Scholar] [CrossRef]
- Majda, A.; Biello, J. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 2003, 60, 1809–1821. [Google Scholar] [CrossRef]
- Ablowitz, M.; Kaup, D.; Newell, A.; Segur, H. Nonlinear evolution equations of physical significance. Phys. Rev. Lett. 1973, 31, 125–127. [Google Scholar] [CrossRef]
- Kenig, C.E.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 1993, 46, 527–620. [Google Scholar] [CrossRef]
- Oh, T. Diophantine conditions in well-posedness theory of coupled KdV-type systems: Local theory. Int. Math. Res. Not. IMRN 2009, 18, 3516–3556. [Google Scholar] [CrossRef]
- Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 1989, 87, 359–369. [Google Scholar] [CrossRef]
- Grujic, Z.; Kalisch, H. Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Differ. Integr. Equ. 2002, 15, 1325–1334. [Google Scholar]
- Barostichi, R.F.; Figueira, R.O.; Himonas, A.A. Well-posedness of the “good” Boussinesq equation in analytic Gevrey spaces and time regularity. J. Differ. Equ. 2019, 267, 3181–3198. [Google Scholar] [CrossRef]
- Hannah, H.; Himonas, A.; Petronilho, G. Gevrey regularity of the periodic gKdV equation. J. Differ. Equ. 2011, 250, 2581–2600. [Google Scholar] [CrossRef]
- Hannah, H.; Himonas, A.A.; Petronilho, G. Gevrey regularity in time for generalized KdV type equations. Contemp. Math. AMS 2006, 400, 117–127. [Google Scholar]
- Himonas, A.; Petronilho, G. Analytic well-posedness of periodic gKdV. J. Differ. Equ. 2012, 253, 3101–3112. [Google Scholar] [CrossRef]
- Holmes, J. Well-posedness and regularity of the generalized Burgers equation in periodic Gevrey spaces. J. Math. Anal. Appl. 2017, 454, 18–40. [Google Scholar] [CrossRef]
- Gorsky, J.; Himonas, A. Construction of non-analytic solutions for the generalized KdV equation. J. Math. Anal. Appl. 2005, 303, 522–529. [Google Scholar] [CrossRef][Green Version]
- Gorsky, J.; Himonas, A.; Holliman, C.; Petronilho, G. The Cauchy problem of a periodic higher order KdV equation in analytic Gevrey spaces. J. Math. Anal. Appl. 2013, 405, 349–361. [Google Scholar] [CrossRef]
- Bekiranov, D.; Ogawa, T.; Ponce, G. Interaction equations for short and long dispersive waves. J. Funct. Anal. 1998, 158, 357–388. [Google Scholar] [CrossRef]
- Alinhac, S.; Metivier, G. Propagation de l’analyticité des solutions des systemes hyperboliques non-linéaires. Invent. Math. 1984, 75, 189–204. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukarou, A.; Guerbati, K.; Zennir, K.; Alodhaibi, S.; Alkhalaf, S. Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces. Mathematics 2020, 8, 809. https://doi.org/10.3390/math8050809
Boukarou A, Guerbati K, Zennir K, Alodhaibi S, Alkhalaf S. Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces. Mathematics. 2020; 8(5):809. https://doi.org/10.3390/math8050809
Chicago/Turabian StyleBoukarou, Aissa, Kaddour Guerbati, Khaled Zennir, Sultan Alodhaibi, and Salem Alkhalaf. 2020. "Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces" Mathematics 8, no. 5: 809. https://doi.org/10.3390/math8050809
APA StyleBoukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., & Alkhalaf, S. (2020). Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces. Mathematics, 8(5), 809. https://doi.org/10.3390/math8050809