Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition
Abstract
1. Introduction
2. Method
2.1. Participants
2.2. Stimuli
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Target | Distracting |
---|---|
Adele | Mevin Lason |
Amy Winehouse | Bolly Boin |
Angelina Jolie | Marlina Marina |
Arnold Schwarzenegger | Maripilian |
Barack Obama | Alver Prismar |
Ben Affleck | Angelica Giama |
Benedict Cumberbatch | Brenda Nill |
Beyoncé | Daniel Primp |
Bill Clinton | Morlan Froman |
Bill Cosby | Wintera Driver |
Bill Gates | Hallera Boin |
Brad Pitt | Jenifer Lucia |
Britney Spears | Bellida |
Cameron Díaz | Raminha |
Cher | Eduard Michael |
Chuck Norris | Ally Beerack |
David Bowie | Jean Depen |
Donald Trump | Meichaela Mark |
Eddie Murphy | Isabella Prima |
Elisabeth II | Principe Loran |
Elvis Presley | Lady Francesca |
Emilia Clarke | Leonidas Lebron |
Emma Watson | Jenny Fistar |
Freddie Mercury | Steven Halling |
George Clooney | Lidia Lia |
Gwyneth Paltrow | Kam Jing |
Harrison Ford | Lea Darsian |
Hillary Clinton | Henrry Ferd |
J. K. Rowling | Siguona Near |
Jack Nicholson | Sergev Pein |
Jennifer Aniston | Jessica Anilla |
Jennifer Lawrence | Albert Liebowitz |
Jessica Alba | Rifka Hartman |
Jodie Foster | Nick Hanningan |
Johnny Depp | Elisa Clock |
Jon Bon Jovi | Nina Hirschfeld |
Julia Roberts | Jhonny Clun |
Keanu Reeves | Adilian |
Kevin Bacon | Joseph Cucumberg |
Kevin Spacey | Nial Nian |
Kim Jong-un | Nila Kadman |
Kim Kardashian | Mike Jhonny |
Kit Harington | Jeana Ryan |
Kristen Stewart | Sean Lopian |
Lady Diana | Kina Lina |
Lady Gaga | Brain William |
Leonardo DiCaprio | Pepil Francis |
Lionel Messi | Miralin Cana |
Lucy Liu | Giulian Lawn |
Madonna | Nillan Loan |
Mariah Carey | Titian |
Marilyn Monroe | Admed Li |
Mark Zuckerberg | Irma Weals |
Meghan Markle | Bill Ruan |
Meryl Streep | Suorak |
Michael Jackson | Ben Callis |
Michael Schumacher | Loda Lea |
Miley Cyrus | Whisper Cerf |
Morgan Freeman | Sach Kodesh |
Muhammad Ali | Ben Beck |
Naomi Campbell | Cayetana Troop |
Nelson Mandela | Seon Loop |
Nicole Kidman | Silvia Harrack |
Pope Francis | Marcus Getz |
Penelope Cruz | H.P. Malian |
Prince Harry | Lean Goop |
Rihanna | Whila Waps |
Robin Williams | Frodian Moop |
Ronaldo | Silina Win |
Ryan Gosling | Daniel Brown |
Salma Hayek | Mary Strap |
Scarlett Johansson | Joseph Beats |
Serena Williams | Nima Champs |
Shakira | Lopold Mossa |
Sigourney Weaver | Renial |
Stephen Hawking | Britania Plims |
Steve Jobs | Kevin Reen |
Vladimir Putin | Mary Pealds |
Whoopi Goldberg | Rubert Wills |
Winona Ryder | Jhon Nillan |
References
- Rizzo, S.; Venneri, A.; Papagno, C. Famous face recognition and naming test: A normative study. Neurol. Sci. 2002, 23, 153–159. [Google Scholar] [CrossRef]
- Davies-Thompson, J.; Johnston, S.; Tashakkor, Y.; Pancaroglu, R.; Barton, J.J.S. The relationship between visual word and face processing lateralization in the fusiform gyri: A cross-sectional study. Brain Res. 2016, 1644, 88–97. [Google Scholar] [CrossRef]
- Kanwisher, N.; McDermott, J.; Chun, M.M. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. J. Neurosci. 1997, 17, 4302–4311. [Google Scholar] [CrossRef]
- Dehaene, S.; Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 2011, 15, 254–262. [Google Scholar] [CrossRef]
- Rossion, B.; Hanseeuw, B.; Dricot, L. Defining face perception areas in the human brain: A large-scale factorial fMRI face localizer analysis. Brain Cogn. 2012, 79, 138–157. [Google Scholar] [CrossRef] [PubMed]
- Centanni, T.M.; Norton, E.S.; Park, A.; Beach, S.D.; Halverson, K.; Ozernov-Palchik, O.; Gaab, N.; Gabrieli, J.D. Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Dev. Sci. 2018, 21, e12658. [Google Scholar] [CrossRef] [PubMed]
- Young, G. Developmental Laterality Research: Childhood. In Causality and Development; Springer International Publishing: Cham, Switzerland, 2019; pp. 57–72. ISBN 978-3-030-02492-5. [Google Scholar]
- Dehaene, S.; Cohen, L. Cultural Recycling of Cortical Maps. Neuron 2007, 56, 384–398. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Dehaene, S.; Naccache, L.; Lehéricy, S.; Dehaene-Lambertz, G.; Hénaff, M.-A.; Michel, F. The visual word form area. Brain 2000, 123, 291–307. [Google Scholar] [CrossRef]
- Martin, L.; Durisko, C.; Moore, M.W.; Coutanche, M.N.; Chen, D.; Fiez, J.A. The VWFA Is the Home of Orthographic Learning When Houses Are Used as Letters. Eneuro 2019, 6, ENEURO.0425-17.2019. [Google Scholar] [CrossRef]
- Nordt, M.; Gomez, J.; Natu, V.; Jeska, B.; Barnett, M.; Grill-Spector, K. Learning to Read Increases the Informativeness of Distributed Ventral Temporal Responses. Cereb. Cortex 2019, 29, 3124–3139. [Google Scholar] [CrossRef]
- Yargholi, E.; Hossein-Zadeh, G.-A.; Rajimehr, R. Predicting Blood Oxygenation Level-Dependent Activity in Fusiform Face Area from the Activity in Other Visual Areas. Brain Connect. 2019, 9, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Mechelli, A.; Gorno-Tempini, M.L.; Price, C.J. Neuroimaging Studies of Word and Pseudoword Reading: Consistencies, Inconsistencies, and Limitations. J. Cogn. Neurosci. 2003, 15, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Hendel, R.K.; Starrfelt, R.; Gerlach, C. The good, the bad, and the average: Characterizing the relationship between face and object processing across the face recognition spectrum. Neuropsychologia 2019, 124, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Plaut, D.C.; Behrmann, M. Response to Susilo and Duchaine: Beyond neuropsychological dissociations in understanding face and word representations. Trends Cogn. Sci. 2013, 17, 546. [Google Scholar] [CrossRef] [PubMed]
- Robotham, R.J.; Starrfelt, R. Face and Word Recognition Can Be Selectively Affected by Brain Injury or Developmental Disorders. Front. Psychol. 2017, 8, 1547. [Google Scholar] [CrossRef] [PubMed]
- Gabay, Y.; Dundas, E.; Plaut, D.; Behrmann, M. Atypical perceptual processing of faces in developmental dyslexia. Brain Lang. 2017, 173, 41–51. [Google Scholar] [CrossRef]
- Balas, B.; Saville, A. Hometown size affects the processing of naturalistic face variability. Vis. Res. 2017, 141, 228–236. [Google Scholar] [CrossRef]
- Bernabé-Valero, G.; Blasco-Magraner, J.S.; Moret-Tatay, C. Testing Motivational Theories in Music Education: The Role of Effort and Gratitude. Front. Behav. Neurosci. 2019, 13, 172. [Google Scholar] [CrossRef]
- Moret-Tatay, C.; Beneyto-Arrojo, M.J.; Laborde-Bois, S.C.; Martínez-Rubio, D.; Senent-Capuz, N. Gender, Coping, and Mental Health: A Bayesian Network Model Analysis. Soc. Behav. Pers. Int. J. 2016, 44, 827–835. [Google Scholar] [CrossRef]
- Puga, J.L.; Krzywinski, M.; Altman, N. Bayesian networks. Nat. Methods 2015, 12, 799–800. [Google Scholar] [CrossRef]
- Ruiz-Ruano, A.-M.; López-Puga, J.; Delgado-Morán, J.-J. El componente social de la amenaza híbrida y su detección con modelos bayesianos/The Social Component of the Hybrid Threat and its Detection with Bayesian Models. Urvio Rev. Lat. Estud. Segur. 2019, 57–69. [Google Scholar] [CrossRef]
- Forster, K.I.; Forster, J.C. DMDX: A Windows display program with millisecond accuracy. Behav. Res. Methods Instrum. Comput. 2003, 35, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Gil-López, C.; Perea, M.; Moret-Tatay, C.; Carreiras, M. Can masked priming effects be obtained with words? Atten. Percept. Psychophys. 2011, 73, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Qiao, E.; Vinckier, F.; Szwed, M.; Naccache, L.; Valabrègue, R.; Dehaene, S.; Cohen, L. Unconsciously deciphering handwriting: Subliminal invariance for handwritten words in the visual word form area. NeuroImage 2010, 49, 1786–1799. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zylstra, R.R. Normality tests for small sample sizes. Qual. Eng. 1994, 7, 45–58. [Google Scholar] [CrossRef]
- Lusher, D.; Robins, G.; Kremer, P. The Application of Social Network Analysis to Team Sports. Meas. Phys. Educ. Exerc. Sci. 2010, 14, 211–224. [Google Scholar] [CrossRef]
- Luo, Y.; El Naqa, I.; McShan, D.L.; Ray, D.; Lohse, I.; Matuszak, M.M.; Owen, D.; Jolly, S.; Lawrence, T.S.; Kong, F.-M., (Spring); et al. Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis. Radiother. Oncol. 2017, 123, 85–92. [Google Scholar] [CrossRef]
- Mooney, C.F.; Mooney, C.L.; Mooney, C.Z.; Duval, R.D.; Duvall, R.; Mooney, C.F.; Mooney, C.L.; Mooney, C.Z.; Duval, R.D.; Duvall, R. Bootstrapping: A nonparametric Approach to Statistical Inference (No. 95); SAGE Publications: Thousand Oaks, CA, USA, 1993. [Google Scholar]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef]
- Barragan-Jason, G. How fast is famous face recognition? Front. Psychol. 2012, 3, 454. [Google Scholar] [CrossRef]
- Behrmann, M.; Plaut, D.C. Distributed circuits, not circumscribed centers, mediate visual recognition. Trends Cogn. Sci. 2013, 17, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, R.; Van der Haegen, L.; Brysbaert, M.; Vingerhoets, G. Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex 2019, 117, 196–204. [Google Scholar] [CrossRef] [PubMed]
- McCandliss, B.D.; Cohen, L.; Dehaene, S. The visual word form area: Expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 2003, 7, 293–299. [Google Scholar] [CrossRef]
- Inamizu, S.; Yamada, E.; Ogata, K.; Uehara, T.; Kira, J.; Tobimatsu, S. Neuromagnetic correlates of hemispheric specialization for face and word recognition. Neurosci. Res. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Kanwisher, N.; Yovel, G. The fusiform face area: A cortical region specialized for the perception of faces. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 2109–2128. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.J.; Lambon Ralph, M.A.; Kim, E.; Tainturier, M.-J.; Beeson, P.M.; Rapcsak, S.Z.; Woollams, A.M. Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions. Cortex 2015, 72, 79–96. [Google Scholar] [CrossRef]
- Sunday, M.A.; Patel, P.A.; Dodd, M.D.; Gauthier, I. Gender and hometown population density interact to predict face recognition ability. Vis. Res. 2019, 163, 14–23. [Google Scholar] [CrossRef]
- Sunday, M.A.; Dodd, M.D.; Tomarken, A.J.; Gauthier, I. How faces (and cars) may become special. Vis. Res. 2019, 157, 202–212. [Google Scholar] [CrossRef]
- De Gardelle, V.; Charles, L.; Kouider, S. Perceptual awareness and categorical representation of faces: Evidence from masked priming. Conscious. Cogn. 2011, 20, 1272–1281. [Google Scholar] [CrossRef]
- Comesaña, M.; Soares, A.P.; Perea, M.; Piñeiro, A.P.; Fraga, I.; Pinheiro, A. ERP correlates of masked affective priming with emoticons. Comput. Hum. Behav. 2013, 29, 588–595. [Google Scholar] [CrossRef]
- Bell, V.; O’Driscoll, C. The network structure of paranoia in the general population. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, Q.; Yang, J.; Cong, G.; Li, G. Modeling of the Public Opinion Polarization Process with the Considerations of Individual Heterogeneity and Dynamic Conformity. Mathematics 2019, 7, 917. [Google Scholar] [CrossRef]
- Druică, E.; Vâlsan, C.; Ianole-Călin, R.; Mihail-Papuc, R.; Munteanu, I. Exploring the Link between Academic Dishonesty and Economic Delinquency: A Partial Least Squares Path Modeling Approach. Mathematics 2019, 7, 1241. [Google Scholar] [CrossRef]
- Solares-Hernández, P.A.; Manzano, F.A.; Pérez-Benito, F.J.; Conejero, J.A. Divisibility Patterns within Pascal Divisibility Networks. Mathematics 2020, 8, 254. [Google Scholar] [CrossRef]
Condition | Stimulus Group | Mean (ms) | SD | Mean (ms) | SD | Accuracy | |
---|---|---|---|---|---|---|---|
Celebrity face | Female face | Men | 852.12 | 81.86 | 816.65 | 111.32 | 72% |
Women | 781.19 | 129.02 | |||||
Male face | Men | 945.03 | 86.58 | 888.75 | 129.25 | 87% | |
Women | 832.48 | 144.01 | |||||
Celebrity name | Female name | Men | 821.62 | 104.24 | 799.81 | 94.31 | 89% |
Women | 778.01 | 82.80 | |||||
Male name | Men | 849.58 | 140.98 | 831.16 | 123.55 | 82% | |
Women | 812.75 | 107.68 | |||||
Non-Celebrity face | Female face | Men | 836.03 | 120.53 | 815.53 | 105.66 | 96% |
Women | 795.03 | 90.04 | |||||
Male face | Men | 824.81 | 125.30 | 807.36 | 100.87 | 97% | |
Women | 789.92 | 71.44 | |||||
Non-Celebrity name | Female name | Men | 932.14 | 96.28 | 917.60 | 105.51 | 96% |
Women | 903.05 | 117.32 | |||||
Male name | Men | 895.69 | 78.80 | 902.64 | 93.22 | 97% | |
Women | 909.59 | 109.68 |
Condition | Mean | SD | Accuracy | |
---|---|---|---|---|
Face Target | Identity Masked Priming Face–Face | 660.06 | 90.12 | 79% |
Related Masked Priming Word–Face | 677.31 | 94.08 | 83% | |
Unrelated Masked Priming Face–Face | 701.33 | 80.10 | 82% | |
Unrelated Masked Priming Word–Face | 706.38 | 96.78 | 77% | |
Name Word Target | Identity Masked Priming Word–Word | 703.31 | 100.29 | 78% |
Related Masked Priming Face–Word | 708.51 | 100.52 | 85% | |
Unrelated Masked Priming Word–Word | 765.95 | 103.22 | 81% | |
Unrelated Masked Priming Face–Word | 745.18 | 105.14 | 83% | |
Face Distracting | Identity Masked Priming Face–Face | 712.32 | 106.39 | 78% |
Related Masked Priming Word–Face | 737.76 | 110.65 | 79% | |
Unrelated Masked Priming Face–Face | 714.90 | 108.22 | 78% | |
Unrelated Masked Priming Word–Face | 746.83 | 110.74 | 79% | |
Name Word Distracting | Identity Masked Priming Word–Word | 814.79 | 129.39 | 87% |
Related Masked Priming Face–Word | 844.89 | 119.61 | 86% | |
Unrelated Masked Priming Word–Word | 851.22 | 126.70 | 87% | |
Unrelated Masked Priming Face–Word | 804.77 | 129.62 | 88% |
Condition | Country | Mean | SD | Mean | SD | |
---|---|---|---|---|---|---|
Target | Identity masked priming for faces | Brazil | 43.17 | 52.15 | 48.29 | |
Spain | 38.11 | 50.64 | 41.27 | |||
USA | 42.53 | 44.09 | ||||
Identity masked priming for names | Brazil | 61.27 | 52.83 | 51.27 | ||
Spain | 64.48 | 49.77 | 62.64 | |||
USA | 62.18 | 53.76 | ||||
Related masked priming for word over faces | Brazil | 10.95 | 65.31 | 62.35 | ||
Spain | 22.24 | 53.73 | 29.07 | |||
USA | 54.03 | 62.22 | ||||
Related masked priming for faces over words | Brazil | 55.58 | 40.64 | 53.48 | ||
Spain | 24.32 | 71.05 | 36.67 | |||
USA | 30.11 | 39.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moret-Tatay, C.; Baixauli-Fortea, I.; Grau Sevilla, M.D.; Irigaray, T.Q. Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition. Mathematics 2020, 8, 699. https://doi.org/10.3390/math8050699
Moret-Tatay C, Baixauli-Fortea I, Grau Sevilla MD, Irigaray TQ. Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition. Mathematics. 2020; 8(5):699. https://doi.org/10.3390/math8050699
Chicago/Turabian StyleMoret-Tatay, Carmen, Inmaculada Baixauli-Fortea, M. Dolores Grau Sevilla, and Tatiana Quarti Irigaray. 2020. "Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition" Mathematics 8, no. 5: 699. https://doi.org/10.3390/math8050699
APA StyleMoret-Tatay, C., Baixauli-Fortea, I., Grau Sevilla, M. D., & Irigaray, T. Q. (2020). Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition. Mathematics, 8(5), 699. https://doi.org/10.3390/math8050699