A Fixed-Point Approach to the Hyers–Ulam Stability of Caputo–Fabrizio Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- if and only if ;
- (ii)
- for all ;
- (iii)
- for all ;
- (i)
- The sequence converges to a fixed point of P;
- (ii)
- is the unique fixed point of P in
- (iii)
- If , then
3. Main Results
- The function is continuous and locally Lipschitz in .
- There exists a constant such that
4. Examples
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassias, T. On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Jung, S.-M. A fixed point approach to the stability of differential equations y′ = F(x,y). Bull. Malays. Math. Sci. Soc. 2010, 33, 47–56. [Google Scholar]
- Liu, K.; Fečkan, M.; O’Regan, D.; Wang, J. Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative. Mathematics 2019, 7, 333. [Google Scholar] [CrossRef] [Green Version]
- Başcı, Y.; Mısır, A.; Öğrekçi, S. On the stability problem of differential equations in the sense of Ulam. Results Math. 2020, 75, 6. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D. Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 2020, 132, 109534. [Google Scholar] [CrossRef]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with caputo derivative. Elect. J. Qual. Theory Diff. Equ. 2011, 63, 1–10. [Google Scholar] [CrossRef]
- Rezaei, H.; Jung, S.; Rassias, T. Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Alqifiary, Q.; Jung, S. Laplace transform and generalized Hyers-Ulam stability of linear differential equations. Electron. J. Differ. Equat. 2014, 2014, 1–11. [Google Scholar]
- Wang, J.; Li, X. A uniform method to Ulam-Hyers stability for some linear fractional equations. Mediterr. J. Math. 2016, 13, 625–635. [Google Scholar] [CrossRef]
- da C. Sousa, J.; Capelas de Oliveira, E. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar]
- Wang, J.; Zhou, Y.; Fečkan, M. Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 2012, 64, 3389–3405. [Google Scholar] [CrossRef] [Green Version]
- Capelas de Oliveira, E.; Vanterler da C. Sousa, J. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Result Math. 2018, 73, 111. [Google Scholar] [CrossRef] [Green Version]
- da C. Sousa, J.; Kucche, K.; Capelas de Oliveira, E. Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 2018, 88, 73–80. [Google Scholar]
- da C. Sousa, J.; Capelas de Oliveira, E. On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 5–21. [Google Scholar]
- Shah, K.; Ali, A.; Bushnaq, S. Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Math. Meth. Appl. Sci. 2018, 41, 8329–8343. [Google Scholar] [CrossRef]
- Ali, Z.; Zada, A.; Shah, K. Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem. Bound. Value Prob. 2018, 2018, 175. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y. Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations. Optimization 2014, 63, 1181–1190. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; O’Regan, D. Ulam-Hyers-Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations. Adv. Differ. Equal. 2019, 50, 1–12. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Losada, J.; Nieto, J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Baleanu, D.; Mousalou, A.; Rezapour, S. On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations. Bound. Value Prob. 2017, 145, 1–9. [Google Scholar] [CrossRef]
- Goufo, F.E.D. Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equations. Math. Model. Anal. 2016, 21, 188–198. [Google Scholar] [CrossRef]
- Atangana, A.; Nieto, J. Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Moore, E.; Sirisubtawee, S.; Koonparasert, S. A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Adv. Differ. Equat. 2019, 2019, 200. [Google Scholar] [CrossRef] [Green Version]
- Dokuyucu, M.; Celik, E.; Bulut, H.; Baskonus, H. Cancer treatment model with the Caputo-Fabrizio fractional derivative. Eur. Phys. J. Plus 2018, 133, 92. [Google Scholar] [CrossRef]
- Başcı, Y.; Öğrekçi, S.; Mısır, A. On Hyers-Ulam stability for fractional differential equations including the new Caputo-Fabrizio fractional derivative. Mediterr. J. Math. 2019, 16, 131. [Google Scholar] [CrossRef]
- Diaz, J.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Fečkan, M.; Wang, J. A Fixed-Point Approach to the Hyers–Ulam Stability of Caputo–Fabrizio Fractional Differential Equations. Mathematics 2020, 8, 647. https://doi.org/10.3390/math8040647
Liu K, Fečkan M, Wang J. A Fixed-Point Approach to the Hyers–Ulam Stability of Caputo–Fabrizio Fractional Differential Equations. Mathematics. 2020; 8(4):647. https://doi.org/10.3390/math8040647
Chicago/Turabian StyleLiu, Kui, Michal Fečkan, and JinRong Wang. 2020. "A Fixed-Point Approach to the Hyers–Ulam Stability of Caputo–Fabrizio Fractional Differential Equations" Mathematics 8, no. 4: 647. https://doi.org/10.3390/math8040647
APA StyleLiu, K., Fečkan, M., & Wang, J. (2020). A Fixed-Point Approach to the Hyers–Ulam Stability of Caputo–Fabrizio Fractional Differential Equations. Mathematics, 8(4), 647. https://doi.org/10.3390/math8040647