A Modified Ren’s Method with Memory Using a Simple Self-Accelerating Parameter
Abstract
:1. Introduction
2. A New Self-Accelerating Type Method
3. A New Technique to Construct the Self-Accelerating Parameter of New Method
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Traub, J.F. Iterative Method for the Solution of Equations; Prentice Hall: New York, NY, USA, 1964. [Google Scholar]
- Petković, M.S.; Ilić, S.; Džunić, J. Derivative free two-point methods with and without memory for solving nonlinear equations. Appl. Math. Comput. 2010, 217, 1887–1895. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Zhang, L.; Ma, W. Variants of Steffensen-secant method and applications. Appl. Math. Comput. 2010, 216, 3486–3496. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, T. A new family of Newton-type iterative methods with and without memory for solving nonlinear equations. Calcolo 2014, 51, 1–15. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, T. Some Newton-type iterative methods with and without memory for solving nonlinear equations. Int. J. Comput. Methods 2014, 11, 1350078. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y.; Qian, W.; Zhang, S.; Fan, X. A Family of Newton Type Iterative Methods for Solving onlinear Equations. Algorithms 2015, 8, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Džunić, J.; Petković, M.S.; Petković, L.D. Three-point methods with and without memory for solving nonlinear equations. Appl. Math. Comput. 2012, 218, 4917–4927. [Google Scholar] [CrossRef]
- Džunić, J.; Petković, M.S. On generalized multipoint root-solvers with memory. J. Comput. Appl. Math. 2015, 236, 2909–2920. [Google Scholar] [CrossRef]
- Zaka Ullah, M.; Kosari, S.; Soleylmani, F.; Khaksar Haghani, F.; Al-Fhaid, A.S. Asuper-fast tri-parametric iterative mehod with memory. Appl. Math. Comput. 2016, 289, 486–491. [Google Scholar]
- Lotfi, T.; Assari, P. New three- and four-parametric iterative with memory methods with efficiency index near 2. Appl. Math. Comput. 2015, 270, 1004–1010. [Google Scholar] [CrossRef]
- Cordero, A.; Lotfi, T.; Bakhtiari, P.; Torregrosa, J.R. An efficient two-parametric family with memory for nonlinear equations. Numer. Algorithms 2015, 68, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, F.; Lotfi, T.; Tavakoli, E.; Haghani, F.K. Several iterative methods with memory using- accelerators. Appl. Math. Comput. 2015, 254, 452–458. [Google Scholar] [CrossRef]
- Sharma, J.R.; Guha, R.K.; Gupta, P. Some efficient derivative free methods with memory for solving nonlinear equations. Appl. Math. Comput. 2012, 219, 699–707. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, T.; Qin, Y. Efficient two-step derivative-free iterative methods with memory and their dynamics. Int. J. Comput. Math. 2016, 93, 1423–1446. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, T. Efficient n-point iterative methods with memory for solving nonlinear equations. Numer. Algorithms 2015, 70, 357–375. [Google Scholar] [CrossRef]
- Campos, B.; Cordero, A.; Torregrosa, J.R.; Vindel, P. A multidimensional dynamical approach to iterative methods with memory. Appl. Math. Comput. 2015, 217, 701–715. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Jordan, C.; Torregroda, J.R. A dynamical comprison between iterative methods with memory: Are the derivative good for the memory? J. Comput. Appl. Math. 2017, 318, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Petković, M.S.; Neta, B.; Petković, L.D.; Džunić, J. Multipoint methods for solving nonlinear equations: A survey. Appli. Math. Comput. 2014, 226, 635–660. [Google Scholar] [CrossRef] [Green Version]
- Iliev, A.; Kyurkchiev, N. Nontrivial Methods in Numerical Analysis: Selected tOpics in Numerical Analysis; Lap Lambert Academic Publishing: Saarbrucken, Germany, 2010. [Google Scholar]
- Wang, X. A new Newton method with memory for solving nonliear equations. Mathematics 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. A new accelerating technique applied to a variant of Cordero-Torregrosa method. J. Comput. Appl. Math. 2018, 330, 695–709. [Google Scholar] [CrossRef]
- Ren, H.; Wu, Q.; Bi, W. A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput. 2009, 209, 206–210. [Google Scholar] [CrossRef]
- Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iterations. J. Appl. Comput. Math. 1974, 21, 643–651. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s Method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
Methods | |||||
---|---|---|---|---|---|
RM | 4.0000000 | ||||
(7) | 4.0000000 | ||||
PM | 4.2384668 | ||||
ZM | 3.3039563 | ||||
WM | 4.2386876 | ||||
(20) with (19) | 4.2371414 | ||||
(20) with (35) | 4.2364379 | ||||
(20) with (36) | 4.2360962 | ||||
(20) with (37) | 4.4481352 | ||||
(20) with (38) | 0.67349 | 4.4473908 |
Methods | |||||
---|---|---|---|---|---|
RM | 4.0000000 | ||||
(7) | 4.0000000 | ||||
PM | 4.2403195 | ||||
ZM | 3.3035264 | ||||
WM | 4.2408357 | ||||
(20) with (19) | 4.2378388 | ||||
(20) with (35) | 4.2357244 | ||||
(20) with (36) | 4.2358506 | ||||
(20) with (37) | 4.4472587 | ||||
(20) with (38) | 4.4436750 |
Methods | |||||
---|---|---|---|---|---|
RM | 4.0000000 | ||||
(7) | 4.0000000 | ||||
PM | 4.2410060 | ||||
ZM | 3.3040229 | ||||
WM | 4.2416331 | ||||
(20) with (19) | 4.2386648 | ||||
(20) with (35) | 4.2317152 | ||||
(20) with (36) | 4.2317416 | ||||
(20) with (37) | 4.4493324 | ||||
(20) with (38) | 4.4489767 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fan, Q. A Modified Ren’s Method with Memory Using a Simple Self-Accelerating Parameter. Mathematics 2020, 8, 540. https://doi.org/10.3390/math8040540
Wang X, Fan Q. A Modified Ren’s Method with Memory Using a Simple Self-Accelerating Parameter. Mathematics. 2020; 8(4):540. https://doi.org/10.3390/math8040540
Chicago/Turabian StyleWang, Xiaofeng, and Qiannan Fan. 2020. "A Modified Ren’s Method with Memory Using a Simple Self-Accelerating Parameter" Mathematics 8, no. 4: 540. https://doi.org/10.3390/math8040540
APA StyleWang, X., & Fan, Q. (2020). A Modified Ren’s Method with Memory Using a Simple Self-Accelerating Parameter. Mathematics, 8(4), 540. https://doi.org/10.3390/math8040540