Next Article in Journal
The Relations between Residuated Frames and Residuated Connections
Previous Article in Journal
Evaluation of the One-Dimensional Lp Sobolev Type Inequality
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces

1
Faculty of Technology, Bulevar Cara Lazara 1, University of Novi Sad, 21000 Novi Sad, Serbia
2
Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
3
Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
4
Institute of Research and Development of Processes IIDP, University of the Basque Country, Campus of Leioa, 48940 Leioa, Bizkaia, Spain
5
Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35, Serbia
*
Authors to whom correspondence should be addressed.
Mathematics 2020, 8(2), 297; https://doi.org/10.3390/math8020297
Submission received: 3 January 2020 / Revised: 18 February 2020 / Accepted: 19 February 2020 / Published: 21 February 2020
(This article belongs to the Section Fuzzy Sets, Systems and Decision Making)

Abstract

:
The main aim of the current paper is the investigation of possibilities for improvements and generalizations contractive condition of Ćirić in the fuzzy metric spaces. Various versions of fuzzy contractive conditions are studied in two directions. First, motivated by recent results, more general contractive conditions in fuzzy metric spaces are achieved and secondly, quasi-contractive type of mappings are investigated in order to obtain fixed point results with a wider class of t-norms.

1. Introduction and Preliminaries

The Banach contraction principle [1] is usually taken as a starting point for many studies in the fixed point theory. The principle is observed in various types of metric spaces, as well as different generalizations of it.
The theory of fuzzy sets [2], with noticeable applications in many sciences [3,4,5,6,7], inspired Kramosil and Michalek [8] to introduce fuzzy metric spaces. Later on, George and Veeramani [9,10] slightly changed its definition and provided a Hausdorff topology for it.
One of the most cited generalizations of the Banach contraction principle in probabilistic metric spaces is by Ćirić [11]. More information about the fuzzy and probabilistic metric spaces, as well as fixed point theory in these spaces, can be found in [12,13,14,15,16,17,18].
First, we list basic definitions and propositions about t-norms and fuzzy metric spaces.
Definition 1
(Schweizer and Sklar [19]). A binary operation T : [ 0 , 1 ] × [ 0 , 1 ] [ 0 , 1 ] is called a triangular norm (t-norm) if the following conditions hold:
(i) 
T ( a , 1 ) = a , a [ 0 , 1 ] ,
(ii) 
T ( a , b ) T ( c , d ) , whenever a c and b d , a , b , c , d [ 0 , 1 ] ,
(iii) 
T is associative and commutative.
Three basic examples of continuous t-norms are
T m i n ( a , b ) = min { a , b } , T P ( a , b ) = a · b a n d T L ( a , b ) = max { a + b 1 , 0 }
(minimum, product and Lukasiewicz t-norm, respectively).
Definition 2
([14]). Let T be a t-norm and T n : [ 0 , 1 ] [ 0 , 1 ] , n N , be defined in the following way:
T 1 ( x ) = T ( x , x ) , T n + 1 ( x ) = T ( T n ( x ) , x ) , n N , x [ 0 , 1 ] .
We say that the T is of H-type if the family T n ( x ) n N is equi-continuous at x = 1 .
A trivial example of t-norm of H-type is T m i n .
By
T i = 1 0 x i = 1 , T i = 1 n x i = T ( T i = 1 n 1 x i , x n ) , x 1 , x 2 , , x n [ 0 , 1 ] ,
t-norm T could be uniquely extended to an n-ary operation [20]. The extension of t-norm T to a countable infinite operation is done as follows:
T i = 1 x i = lim n T i = 1 n x i , x n [ 0 , 1 ] , n N ,
where T i = 1 x i exists since the sequence ( T i = 1 n x i ) n N is non-increasing and bounded from below.
Let lim n x n = 1 and
lim n T i = n x i = lim n T i = 1 x n + i = 1 ,
(see [15,21]). Then,
lim n T i = n x i = 1 i f a n d o n l y i f i = 1 ( 1 x i ) < ,
for T = T L and T = T P , while
lim n T i = n x i = 1 i m p l i e s i = 1 ( 1 x i ) < ,
for T T L .
Proposition 1
([15]). Let { x n } n N be a sequence of numbers from [ 0 , 1 ] such that lim n x n = 1 and the t-norm T is of H-type. Then
lim n T i = n x i = lim n T i = 1 x n + i = 1 .
Definition 3
(George and Veeramani [9]). A triple ( X , M , T ) is called a fuzzy metric space if X is a non-empty set, T is a continuous t-norm and M : X 2 × ( 0 , ) ( 0 , 1 ] is a fuzzy set satisfying the following conditions:
(GV1) 
M ( x , y , t ) > 0 ,
(GV2) 
M ( x , y , t ) = 1 if and only if x = y ,
(GV3) 
M ( x , y , t ) = M ( y , x , t ) ,
(GV4) 
M ( x , z , t + s ) T ( M ( x , y , t ) , M ( y , z , s ) ) ,
(GV5) 
M ( x , y , · ) : ( 0 , ) ( 0 , 1 ] is continuous,
for all x , y , z X and t , s > 0 .
Definition 4
([9]). Let ( X , M , T ) be a fuzzy metric space. Then,
(i) 
A sequence { x n } n N converge to x X (i.e., lim n + x n = x ), if lim n + M ( x n , x , t ) = 1 , t > 0 .
(ii) 
A sequence { x n } n N is called Cauchy if, for each ε ( 0 , 1 ) and t > 0 , there exists n 0 N such that M ( x n , x m , t ) > 1 ε , for all m , n n 0 .
A fuzzy metric space ( X , M , T ) is complete if every Cauchy sequence is convergent.
Originally, in [11], a fixed point results in the probabilistic metric spaces with the following generalization of the Banach’s contraction principle:
F T u , T v ( q x ) min { F u , v ( x ) , F u , T u ( x ) , F v , T v ( x ) , F u , T v ( 2 x ) , F v , T u ( 2 x ) } ,
where x > 0 , are studied. Mappings F which, for some q ( 0 , 1 ) , satisfies condition (1) are named quasi-contractive mappings. In [11] is used t-norm T such that T ( x , x ) x , x [ 0 , 1 ] , which means that T = T m i n .
In the first part of the section with the main results, possibilities for further extensions of t-norm in the context of fixed point problems with quasi-contractive mappings in the fuzzy metric spaces are elaborated. Within this observation, the potential for removing the scale 2 in the last two terms of condition (1) is stated.
Let ( X , d ) be a metric space and mapping T : X X . Recently, Kumam et al. [22] presented the following generalization contractive condition (1) of Ćirić,
d ( T x , T y ) q max { d ( x , y ) , d ( x , T x ) , d ( y , T y ) , d ( x , T y ) , d ( y , T x ) ,
d ( T 2 x , x ) , d ( T 2 x , T x ) , d ( T 2 x , y ) , d ( T 2 x , T y ) } ,
for all x , y X and some q [ 0 , 1 ) . In this case, they called the given condition a generalized quasi-contraction.
In the current paper, we study generalized quasi-contractions in fuzzy metric spaces, the existence and uniqueness of a fixed point are proven and an appropriate example is given.
Definition 5
(Gregori and Sapena [23]). Let ( X , M , T ) be a fuzzy metric space. f : X X is called a fuzzy contractive mapping if there exists k ( 0 , 1 ) such that
1 M ( f x , f y , t ) 1 k 1 M ( x , y , t ) 1 ,
for each x , y X and t > 0 , k is called the contractive constant of f .
Definition 6
(Mihet [24]). Let Ψ be the class of all mappings ψ : ( 0 , 1 ] ( 0 , 1 ] such that ψ is continuous, non-decreasing and ψ ( t ) > t for all t ( 0 , 1 ) . Let ψ Ψ . A mapping f : X X is said to be fuzzy ψ-contractive mapping if
M ( f x , f y , t ) ψ ( M ( x , y , t ) ) ,
for all x , y X and t > 0 .
Definition 7
(Wardowski [25]). Denoted by H the family of mappings η : ( 0 , 1 ] [ 0 , ) satisfying the following two conditions:
(H1) 
η transforms ( 0 , 1 ] onto [ 0 , ) ;
(H2) 
η is strictly decreasing.
Note that (H1) and (H2) imply that η ( 1 ) = 0 .
Definition 8.
Let ( X , M , T ) be a fuzzy metric space. A mapping f : X X is said to be fuzzy H -contractive with respect to η H if there exists k ( 0 , 1 ) satisfying the following condition
η M ( f x , f y , t ) k η ( M ( x , y , t ) ) ,
for all x , y X and t > 0 .
Note that for a mapping η H of the form η ( t ) = 1 t 1 , t ( 0 , 1 ] , Definition 8 reduces to Definition 5.
Remark 1.
It has been shown in [26] that the class of fuzzy H -contractive mappings are included in the class of ψ-contractive mappings.
Remark 2.
Note that if Definition 3 is allowed to is M ( x , y , t ) = 0 then condition (2) of Gregori and Sapena and condition (3) of Mihet are not correctly defined, which is why condition (GV1) in Definition 3 is important.
Moreover, if ( X , M , T ) is a fuzzy metric space then M is a continuous function on X × X × ( 0 , ) [27], and M ( x , y , · ) is nondecreasing for all x , y X ,28].
Proposition 2.
Let ( X , M , T ) be a fuzzy metric space and let η H . A sequence { x n } n N in X is Cauchy if and only if, for every ε > 0 and t > 0 , there exists n 0 N such that
η M ( x m , x n , t ) < ε , f o r a l l m , n n 0 .
Proposition 3.
Let ( X , M , T ) be a fuzzy metric space and let η H . A sequence { x n } n N in X is convergent to x X if and only if,
lim n η ( M ( x n , x , t ) ) = 0 ,
for all t > 0 .
Theorem 1
(Wardowski [25]). Let ( X , M , T ) be a complete fuzzy metric space and let f : X X be a fuzzy H -contractive mapping with respect to η H such that
(a) 
T n = 1 k M ( x , f x , t n ) 0 , for all x X , k N and any sequence { t n } n N ( 0 , ) , t n 0 ;
(b) 
T ( r , s ) > 0 implies η ( T ( r , s ) ) η ( r ) + η ( s ) , for all r , s { M ( x , f x , t ) : x X , t > 0 } ;
(c) 
η ( M ( x , f x , t n ) : n N } is bounded for all x X and any sequence { t n } n N ( 0 , ) , t n 0 .
Then, f has a unique fixed point x * X and for each x 0 X , the sequence { f n x 0 } n N converges to x * .
Further, motivated by the contractive condition (1) of Ćirić, in [27] fuzzy H -contractive mappings are generalized and the existence of a fixed point for fuzzy H -quasi-contractive mapping is proven.
Definition 9
([27]). Let ( X , M , T ) be a fuzzy metric space. A mapping f : X X is said to be fuzzy H -quasi-contractive with respect to η H if there exists k ( 0 , 1 ) , satisfying the following condition:
η ( M ( f x , f y , t ) ) k max { η ( M ( x , y , t ) ) , η ( M ( x , f x , t ) ) , η ( M ( y , f y , t ) ) , η ( M ( x , f y , t ) ) , η ( M ( y , f x , t ) ) } ,
for all x , y X and any t > 0 .
In the last part of the next section fuzzy H -quasi-contractive mappings are generalized in the spirit of generalized quasi-contractions [22] and fixed point result in fuzzy metric spaces is presented. Moreover, the mentioned generalization is confirmed by example.

2. Main Results

In this section, we use the fuzzy metric spaces in the sense of Definition 3 with additional condition lim t M ( x , y , t ) = 1 , x , y X .
To prove the results, we use the following very important lemma:
Lemma 1.
Let { x n } be a sequence in fuzzy metric space ( X , M , T ) . If there exists q ( 0 , 1 ) such that
M ( x n , x n + 1 , t ) M ( x n 1 , x n , t q ) , t > 0 , n N ,
and
lim n T i = n M ( x 0 , x 1 , 1 μ i ) = 1 , μ ( 0 , 1 ) ,
then { x n } is a Cauchy sequence.
Proof. 
Let σ ( q , 1 ) and let t > 0 . Then i = 1 σ i < ; therefore, there exists n 0 = n 0 ( t ) , such that i = n 0 σ i t . Clearly, condition (6) implies that
M ( x n , x n + 1 , t ) M ( x 0 , x 1 , t q n ) , n N .
For n n 0 , m N we have
M ( x n , x n + m , t ) M ( x n , x n + m , i = n σ i ) M ( x n , x n + m , i = n n + m 1 σ i )
T ( T ( T ( m 1 ) t i m e s ( M ( x n , x n + 1 , σ n ) , , M ( x n + m 1 , x n + m , σ n + m 1 ) ) )
T ( T ( T ( m 1 ) t i m e s ( M ( x 0 , x 1 , σ n q n ) , , M ( x 0 , x 1 , σ n + m 1 q n + m 1 ) ) ) .
Let μ = q σ ( 0 , 1 ) . Then
M ( x n , x n + m , t ) T i = n n + m 1 M ( x 0 , x 1 , 1 μ i ) T i = n M ( x 0 , x 1 , 1 μ i ) , n n 0 , m N .
Now, by (7) follows Definition 4 (ii) and { x n } is Cauchy sequence.
Our first new result in this section is the following:
Theorem 2.
Let ( X , M , T m i n ) be a complete fuzzy metric space and let f : X X be a quasi-contractive mapping such that, for some q ( 0 , 1 2 ) :
M ( f x , f y , t ) min { M ( x , y , t q ) , M ( f x , x , t q ) , M ( f y , y , t q ) , M ( x , f y , t q ) , M ( f x , y , t q ) } ,
for all x , y X and t > 0 . Suppose that there exists x 0 X such that
lim n T i = n M ( x 0 , f x 0 , 1 μ i ) = 1 , μ ( 0 , 1 ) .
Then, f has unique fixed point.
Proof. 
Let x n = f x n 1 , n N , where initial x 0 X satisfied (9). Then, observe (8) with x = x n 1 , y = x n :
M ( x n , x n + 1 , t ) min { M ( x n 1 , x n , t q ) , M ( x n , x n 1 , t q ) , M ( x n + 1 , x n , t q ) , M ( x n 1 , x n + 1 , t q ) , M ( x n , x n , t q ) } min { M ( x n 1 , x n , t q ) , M ( x n , x n + 1 , t q ) , min { M ( x n 1 , x n , t 2 q ) , M ( x n , x n + 1 , t 2 q ) } , min { M ( x n 1 , x n , t 2 q ) , M ( x n , x n + 1 , t 2 q ) } } ,
t > 0 , n N . If we suppose that
min { M ( x n 1 , x n , t 2 q ) , M ( x n , x n + 1 , t 2 q ) } = M ( x n , x n + 1 , t 2 q ) ,
then, using the previous calculations, we get the contradiction
M ( x n , x n + 1 , t ) M ( x n , x n + 1 , t 2 q ) ,
since 2 q < 1 and M ( x , y , t ) is increased by t . Thus,
M ( x n , x n + 1 , t 2 q ) M ( x n 1 , x n , t 2 q ) ,
for all n N , and for q 1 = 2 q , q 1 ( 0 , 1 ) :
M ( x n , x n + 1 , t ) M ( x n 1 , x n , t q 1 ) , t > 0 , n N .
By Lemma 1, it follows that { x n } is Cauchy sequence. Space ( X , M , T m i n ) is complete and there exist x * X such that lim n x n = x * .
If we put x = x n , y = x * in (8):
M ( x n + 1 , f x * , t ) min { M ( x n , x * , t q ) , M ( x n + 1 , x n , t q ) , M ( f x * , x * , t q ) , M ( x n , f x * , t q ) , M ( f x , y , t q ) } ,
n N , t > 0 , and take n then
M ( x * , f x * , t ) M ( x * , f x * , t q ) , t > 0 ,
i.e., x * is the fixed point for f .
Suppose that x * and y * are fixed points for f then, by (8):
M ( f x * , f y * , t ) min { M ( x * , y * , t q ) , M ( f x * , x * , t q ) , M ( f y * , y * , t q ) , M ( x * , f y * , t q ) , M ( f x * , y * , t q ) } ,
t > 0 . Then, M ( x * , y * , t ) M ( x * , y * , t q ) , t > 0 , and x * = y * .
Remark 3.
Condition (8) is one of the Ćirić’s type (1) where scale 2 in the last two terms is omitted. This improvement of condition has a narrowing of interval for contractive constant q as a consequence. With small changes in the proof of Theorem 2, it can be shown that for the extension of the interval to q ( 0 , 1 ) , we need condition
M ( f x , f y , t ) min { M ( x , y , t q ) , M ( f x , x , t q ) , M ( f y , y , t q ) , M ( f x , y , t q ) , M ( x , f y , 2 t q ) } ,
for all x , y X and t > 0 . In both observed cases for t-norm is used T m i n . For a wider class of t-norm T T p , the condition is slightly weaker, i.e., there exists q ( 0 , 1 ) such that
M ( f x , f y , t ) min { M ( x , y , t q ) , M ( f x , x , t q ) , M ( f y , y , t q ) , M ( f x , y , t q ) , M ( x , f y , 2 t q ) } ,
for all x , y X and t > 0 . In a more general case, if T is arbitrary t-norm, we have the following condition: there exist q ( 0 , 1 ) such that
M ( f x , f y , t ) min { M ( x , y , t q ) , M ( f x , x , t q ) , M ( f y , y , t q ) , M ( f x , y , t q ) } ,
for all x , y X and t > 0 . However, if we restrict t-norm to H-type additional condition (9) could be omitted, due to Proposition 1.
Example 1.
Let X = ( 0 , 2 ) , M ( x , y , t ) = e | x y | t , T = T P and
f ( x ) = { 2 x x ( 0 , 1 ) 1 x [ 1 , 2 ) .
Case 1. If x , y [ 1 , 2 ) , then M ( f x , f y , t ) = 1 , t > 0 and conditions (11) and (12) are trivially satisfied.
Case 2. If x [ 1 , 2 ) and y ( 0 , 1 ) , then, for q 1 2 , we have
M ( f x , f y , t ) = e 1 y t e 2 q ( 1 y ) t = M ( f y , y , t q ) , t > 0 .
Case 3. Analogously as in the previous case for q 1 2 we have
M ( f x , f y , t ) M ( f x , x , t q ) , x ( 0 , 1 ) , y [ 1 , 2 ) , t > 0 .
Case 4. If x , y ( 0 , 1 ) , then, for q 1 2 ,
M ( f x , f y , t ) = e x y t e 1 y t e 2 q ( 1 y ) t = M ( f y , y , t q ) , x > y , t > 0 ,
and
M ( f x , f y , t ) M ( f x , x , t q ) , x < y , t > 0 .
Thus, conditions (11) and (12) are satisfied for all x , y X , t > 0 and by Remark 3 and Theorem 2 follows that x = 1 is a unique fixed point for f .
Now, we announce our second new result in the paper.
Theorem 3.
Let ( X , M , T ) be a complete fuzzy metric space, T T P and let f : X X is a fuzzy generalized quasi-contractive mapping such that for some q ( 0 , 1 ) :
M ( f x , f y , t ) min { M ( x , y , t q ) , M ( f x , x , t q ) , M ( f y , y , t q ) , M ( f x , y , t q ) , M ( x , f y , 2 t q ) , M ( f 2 x , x , 2 t q ) , M ( f 2 x , f x , t q ) , M ( f 2 x , y , t q ) , M ( f 2 x , f y , t q ) } ,
for all x , y X and t > 0 . Suppose that there exists x 0 X such that
lim n T i = n M ( x 0 , f x 0 , 1 μ i ) = 1 , μ ( 0 , 1 ) .
Then, f has a unique fixed point.
Proof. 
Let x 0 X satisfied condition (14) and x n = f x n 1 , n N . Take x = x n 1 , y = x n in (13)
M ( x n , x n + 1 , t ) min { M ( x n 1 , x n , t q ) , M ( x n , x n 1 , t q ) , M ( x n + 1 , x n , t q ) , M ( x n , x n , t q ) , M ( x n 1 , x n + 1 , 2 t q ) , M ( x n + 1 , x n 1 , 2 t q ) , M ( x n + 1 , x n , t q ) , M ( x n + 1 , x n , t q ) , M ( x n + 1 , x n + 1 , t q ) } = min { M ( x n 1 , x n , t q ) , M ( x n , x n + 1 , t q ) , M ( x n 1 , x n + 1 , 2 t q ) , 1 } min { M ( x n 1 , x n , t q ) , M ( x n , x n + 1 , t q ) , M ( x n 1 , x n , t q ) · M ( x n , x n + 1 , t q ) } = min { M ( x n 1 , x n , t q ) , M ( x n , x n + 1 , t q ) } ,
for all t > 0 , n N . Now, if we suppose that
min { M ( x n 1 , x n , t q ) , M ( x n , x n + 1 , t q ) } = M ( x n , x n + 1 , t q )
contradiction M ( x n , x n + 1 , t ) M ( x n , x n + 1 , t q ) is obtained. Thus,
M ( x n , x n + 1 , t ) M ( x n 1 , x n , t q ) ,
for all t > 0 , n N , now by Lema 1, it follows that { x n } is Cauchy sequence. Since ( X , M , T ) is complete, there exists x * X such that lim n x n = x * .
Further, let x = x n , y = x * in (13):
M ( x n + 1 , f x * , t ) min { M ( x n , x * , t q ) , M ( x n + 1 , x n , t q ) , M ( f x * , x * , t q ) , M ( x n + 1 , x * , t q ) , M ( x n , x n + 1 , t q ) · M ( x n + 1 , f x * , t q ) , M ( x n + 2 , x n , 2 t q ) , M ( x n + 2 , x n + 1 , t q ) , M ( x n + 2 , x * , t q ) , M ( x n + 2 , f x * , t q ) } ,
for all t > 0 , n N . Take n in the last relation:
M ( x * , f x * , t ) min { 1 , 1 , M ( f x * , x * , t q ) , 1 , M ( x * , f x * , t q ) , 1 , 1 , 1 , M ( x * , f x * , t q ) } = min { 1 , M ( f x * , x * , t q ) , M ( x * , f x * , t q ) } = M ( f x * , x * , t q ) ,
for all t > 0 . Hence, x * is the fixed point for mapping f .
Suppose that x * = f x * , y * = f y * and x * y * . Condition (13) with x = x * , y = y * leads to the contradiction:
M ( x * , y * , t ) min { M ( x * , y * , t q ) , M ( x * , x * , t q ) , M ( y * , y * , t q ) , M ( x * , y * , t q ) , M ( x * , x * , t q ) · M ( x * , y * , t q ) , M ( x * , x * , 2 t q ) , M ( x * , x * , t q ) , M ( x * , y * , t q ) , M ( x * , y * , t q ) } = M ( x * , y * , t q ) ,
for all t > 0 . and x * is a unique fixed point.
Remark 4.
Considering the proof of Theorem 3, it is evident that if we replace condition (13) by the following one:
M ( f x , f y , t ) min { M ( x , y , t q ) , M ( f x , x , t q ) , M ( f y , y , t q ) , M ( f x , y , t q ) , M ( f 2 x , f x , t q ) , M ( f 2 x , y , t q ) , M ( f 2 x , f y , t q ) } ,
for all x , y X and t > 0 , then condition T T P could be omitted.
On the other hand, if we restrict t-norm to T = T m i n instead of (13), we have the stronger condition:
M ( f x , f y , t ) min { M ( x , y , t q ) , M ( f x , x , t q ) , M ( f y , y , t q ) , M ( f x , y , t q ) , M ( x , f y , 2 t q ) , M ( f 2 x , x , 2 t q ) , M ( f 2 x , f x , t q ) , M ( f 2 x , y , t q ) , M ( f 2 x , f y , t q ) } ,
for all x , y X and t > 0 .
Example 2.
Let ( X , M , T P ) be a fuzzy metric space where X = { 1 , 2 , 3 , 4 , 5 } and
M ( x , y , t ) = t t + d ( x , y ) , d ( x , y ) = 0 , x = y 2 , ( x , y ) { ( 1 , 4 ) , ( 1 , 5 ) , ( 4 , 1 ) , ( 5 , 1 ) } 1 , o t h e r w i s e .
Let f : X X be defined by
f 1 = f 2 = f 3 = 1 , f 4 = 2 , f 5 = 3 .
Observe that if x = y or x , y { 1 , 2 , 3 } , then M ( f x , f y , t ) = 1 , t > 0 and conditions (11) and (13) are fulfilled.
Let x = 4 , y = 5 . Then
t t + 1 < min t t + q , t t + q , t t + q , t t + q , t t + q 2 , t > 0 ,
for every q ( 0 , 1 ) , which is in contradiction with condition (11), while condition (13):
t t + 1 min t t + q , t t + q , t t + q , t t + q , t t + q 2 ,
t t + q 2 , t t + q , t t + 2 q , t t + q = t t + 2 q , t > 0 ,
is satisfied for q ( 1 2 , 1 ) . One could check that inequality (13) holds for the rest x , y X .
If we keep the definitions for M ( x , y , t ) , d ( x , y ) and f ( x ) and take the appropriate T, then the same conclusions for conditions (12), (15), (10) and (16) could be obtained, i.e., (12) and (10) failed for x = 4 , y = 5 , while (15) and (16) are fulfilled for every x , y X .
Example 3.
Let ( X , M , T ) be a fuzzy metric space where X = { 1 , 2 , 3 , 4 } and
M ( x , y , t ) = t t + d ( x , y ) , d ( x , y ) = 0 , x = y 1 , ( x , y ) { ( 1 , 2 ) , ( 3 , 4 ) } 2 , o t h e r w i s e .
Let f : X X be defined by
f 1 = f 2 = f 3 = 1 , f 4 = 2 .
If x = y or x , y { 1 , 2 , 3 } then M ( f x , f y , t ) = 1 , t > 0 .
Let x = 3 , y = 4 . Then, for every q ( 0 , 1 ) ,
M ( f x , f y , t ) = t t + 1 < t t + q = M ( x , y , t q ) , t > 0 ,
and Banach contraction principle is not satisfied. On the other hand, for x = 3 , y = 4 and q [ 1 2 , 1 ) :
M ( f x , f y , t ) = t t + 1 t t + 2 q = M ( f x , x , t q ) , t > 0 .
Thus, conditions (12), (11) and (10) are satisfied for given values of x and y as well as for all x , y X .
Finally, we introduce a new type of mapping and prove the corresponding new result in the context of fuzzy metric spaces.
Definition 10.
Let ( X , M , T ) be a fuzzy metric space. A mapping f : X X is said to be fuzzy generalized H -quasi-contractive with respect to η H if there exists q ( 0 , 1 ) such that
η ( M ( f x , f y , t ) ) q max { η ( M ( x , y , t ) ) , η ( M ( f x , x , t ) ) , η ( M ( f y , y , t ) ) , η ( M ( f 2 x , f x , t ) ) , η ( M ( f x , y , t ) ) , η ( M ( x , f y , t ) ) , η ( M ( f 2 x , x , t ) ) , η ( M ( f 2 x , y , t ) ) , η ( M ( f 2 x , f y , t ) ) } ,
for all x , y X , t > 0 .
Theorem 4.
Let ( X , M , T ) be a complete fuzzy metric space and let f : X X be a fuzzy generalized H -quasi-contractive mapping with respect to η H such that
(a) τ T ( r , s ) implies η ( τ ) η ( r ) + η ( s ) , for all r , s , τ { M ( f n x , f m x , t ) : x X , t > 0 , n , m N } ;
(b) { η ( M ( x , f x , t n ) ) : n N } is bounded for all x X and any sequence { t n } ( 0 , ) , t n 0 .
Then, f has a unique fixed point x * X and for each x X the sequence { f n x } converges to x * .
Proof. 
Let A X and δ t ( A ) = sup { η ( M ( x , y , t ) ) : x , y A } . The orbit of f at x is defined by
O ( x , n ) = { x , f x , , f n x } , n N a n d O ( x , ) = { x , f x , } .
Take arbitrary x X , n N and let i , j { 1 , 2 , , n 1 } . By (17), with x = f i 1 x , y = f j 1 x , we have
η ( M ( f f i 1 x , f f j 1 x , t ) ) q max { η ( M ( f i 1 x , f j 1 x , t ) ) , η ( M ( f i x , f i 1 x , t ) ) , η ( M ( f j x , f j 1 x , t ) ) , η ( M ( f i x , f j 1 x , t ) ) , η ( M ( f i + 1 x , f i x , t ) ) , η ( M ( f i + 1 x , f i x , t ) ) , η ( M ( f i + 1 x , f j 1 x , t ) ) , η ( M ( f i 1 x , f j x , t ) ) , η ( M ( f i + 1 x , f j x , t ) ) } q δ t ( O ( x , n ) ) ,
for all t > 0 . Suppose that there exist i 0 , j 0 { 2 , 3 , , n 1 } such that δ t ( O ( x , n ) ) = η ( M ( f i 0 x , f j 0 x , t ) ) . Then, by (18) with i = i 0 , j = j 0 , it follows that
δ t ( O ( x , n ) ) q δ t ( O ( x , n ) ) ,
i.e., δ t ( O ( x , n ) ) = 0 and η ( M ( f i x , f j x , t ) ) = 0 , i , j n 1 . In particular, η ( M ( x , f x , t ) ) = 0 , M ( x , f x , t ) = 1 and x is fixed point for f .
For the case
δ t ( O ( x , n ) ) = η ( M ( x , f k x , t ) ) ,
for some k n the proof is analogous with ([27], [Theorem 2.3.]) and { x n } n N , x n = f n x , is a Cauchy sequence. Thus, there exists x * X such that lim n x n = x * .
By (GV4), condition (a) and (17), with x = f n x * , y = x * , for every ε > 0 and n N we have
η ( M ( x * , f x * , ε + t ) ) η ( M ( x * , f n + 1 x * , ε ) ) + η ( M ( f n + 1 x * , f x * , t ) )
η ( M ( x * , f n + 1 x * , ε ) ) + q max { η ( M ( f n x * , x * , t ) ) , η ( M ( f n + 1 x * , f n x * , t ) ) ,
η ( M ( f x * , x * , t ) ) , η ( M ( f n + 1 x * , x * , t ) ) , η ( M ( f n x * , f x * , t ) ) , η ( M ( f n + 2 x * , f n x * , t ) ) ,
η ( M ( f n + 2 x * , f n + 1 x * , t ) ) , η ( M ( f n + 2 x * , x * , t ) ) , η ( M ( f n + 2 x * , f x * , t ) ) } .
If we take n and ε 0 in the previous calculation, the next relation is obtained
η ( M ( x * , f x * , t ) ) q η ( M ( x * , f x * , t ) )
which implies that η ( M ( x * , f x * , t ) ) = 0 , i.e., M ( x * , f x * , t ) = 1 and x * is a fixed point for f .
Suppose that x * and y * are fixed points for f . Then, by (17), with x = x * , y = y * , we have
η ( M ( x * , y * , t ) ) = η ( M ( f x * , f y * , t ) ) q max { η ( M ( x * , y * , t ) ) , η ( M ( f x * , x * , t ) ) ,
η ( M ( f y * , y * , t ) ) , η ( M ( f x * , y * , t ) ) , η ( M ( x * , f y * , t ) ) , η ( M ( f 2 x * , x * , t ) ) ,
η ( M ( f 2 x * , f x * , t ) ) , η ( M ( f 2 x * , y * , t ) ) , η ( M ( f 2 x * , f y * , t ) ) } = q η ( M ( x * , y * , t ) ) .
Thus, M ( x * , y * , t ) = 1 and x * is the unique fixed point for f .
Example 4.
Let ( X , M , T P ) be a fuzzy metric space and f : X X , where X , d ( x , y ) and f are the same as in Example 2, while
M ( x , y , t ) = e d ( x , y ) t + 1 , x , y X , t > 0 .
Take arbitrary η H and let x = 4 and y = 5 . In that case, looking at condition (5), we have the following:
η ( e 1 t + 1 ) q max η ( e 1 t + 1 ) , η ( e 1 t + 1 ) , η ( e 1 t + 1 ) , η ( e 1 t + 1 ) , η ( e 1 t + 1 ) , t > 0 ,
which is not satisfied since q ( 0 , 1 ) , and f is not fuzzy H -quasi-contractive mapping.
Now, take η ( τ ) = ln ( τ ) when, η ( M ( x , y , t ) ) = d ( x , y ) t + 1 , and check condition (17) for x = 4 and y = 5 :
1 t + 1 q max 1 t + 1 , 1 t + 1 , 1 t + 1 , 1 t + 1 , 1 t + 1 , 2 t + 1 , 1 t + 1 , 2 t + 1 , 1 t + 1 = 2 q t + 1 ,
for all t > 0 . Thus, for q [ 1 2 , 1 ) condition (17) is satisfied. Similarly, it could be shown that (17) holds for all x , y X , t > 0 and f is fuzzy generalized H -quasi-contractive mapping with respect to specified η .
Moreover, conditions (a) and (b) of Theorem 4 hold and x = 1 is a unique fixed point for f .
Remark 5.
If, in Theorem 4, we suppose that f ( x ) x , x X , then the contractive condition (17) could be replaced by the following one:
η ( M ( f x , f y , t ) ) q max { η ( M ( x , y , t ) ) , η ( M ( f x , x , t ) ) , η ( M ( f y , y , t ) ) , η ( M ( f 2 x , f x , t ) ) , η ( M ( f x , y , t ) ) , η ( M ( x , f y , t ) ) , η ( M ( f 2 x , x , t ) ) , η ( M ( f 2 x , y , t ) ) , η ( M ( f 2 x , f y , t ) ) } , x y , t > 0
and
η ( M ( f x , f y , t ) ) q max { η ( M ( x , y , t ) ) , η ( M ( f x , x , t ) ) , η ( M ( f y , y , t ) ) , η ( M ( f 2 y , f y , t ) ) , η ( M ( f x , y , t ) ) , η ( M ( x , f y , t ) ) , η ( M ( f 2 y , y , t ) ) , η ( M ( f 2 y , x , t ) ) , η ( M ( f 2 y , f x , t ) ) } , x < y , t > 0 .
Then, the proof of Theorem 4 is slightly modified in the part where the existence of the fixed point is proved. Now, we take x = f n x * , y = x * if x y and x = x * , y = f n x * if x < y .
Example 5.
Let X = [ 0 , + ) , f ( x ) = 2 x , while M ( x , y , t ) and η ( τ ) are the same as in Example 4. It is easy to check that condition (5) is not satisfied. Moreover, in general quasi-contractive conditions are not suitable for functions of type f ( x ) = k x , k > 1 .
The other way, for q 2 3 , we have
η ( M ( f x , f y , t ) ) = 2 ( x y ) t + 1 3 q x t + 1 = q η ( M ( f 2 x , x , t ) ) , x y , t > 0
and
η ( M ( f x , f y , t ) ) = 2 ( y x ) t + 1 3 q y t + 1 = q η ( M ( f 2 y , y , t ) ) , x < y , t > 0 ,
and by Remark 5, we conclude that x = 0 is a unique fixed point for f .

Author Contributions

All authors contributed equally and significantly in writing this paper. All authors have read and agreed to the published version of the manuscript.

Funding

The authors D. Rakić and T. Došenović are supported by projects MNTRRS-174009, III 44006 and PSNTR project no. 114-451-2098.

Acknowledgments

Author M. De la Sen thanks the Basque Government for its support of this work through Grant IT1207-19.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les ope´rations dans les ensembles abstraits et leur application aux e´uations inte´grales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
  3. Fuller, R. Neural Fuzzy Systems; ESF Series A: 443; Abo Akademis Tryckeri: Turku, Finland, 1995. [Google Scholar]
  4. McBratney, A.; Odeh, I.O.A. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 1997, 77, 85–113. [Google Scholar] [CrossRef]
  5. El Naschie, M.S. The two-slit experiment as the foundation of E-infinity of high energy physics. Chaos Soliton Fractal 2005, 25, 509–514. [Google Scholar] [CrossRef]
  6. Romaguera, S.; Sapena, A.; Tirado, P. The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words. Topol. Appl. 2007, 154, 2196–2203. [Google Scholar] [CrossRef] [Green Version]
  7. Steimann, F. On the use and usefulness of fuzzy sets in medical AI. Artif. Intell. Med. 2001, 21, 131–137. [Google Scholar] [CrossRef] [Green Version]
  8. Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11, 336–344. [Google Scholar]
  9. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
  10. George, A.; Veeramani, P. On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 1997, 90, 365–368. [Google Scholar] [CrossRef]
  11. Ćirić, L. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef]
  12. Došenović, T.; Rakić, D.; Brdar, M. Fixed point theorem in fuzzy metric spaces using altering distance. Filomat 2014, 28, 1517–1524. [Google Scholar] [CrossRef]
  13. Došenović, T.; Rakić, D.; Carić, B.; Radenović, S. Multivalued generalizations of fixed point results in fuzzy metric spaces. Nonlinear Anal. Model. Control 2016, 21, 211–222. [Google Scholar] [CrossRef]
  14. Hadžić, O. A fixed point theorem in Menger spaces. Publ. Inst. Math. 1979, 20, 107–112. [Google Scholar]
  15. Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
  16. Mihet, D. A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 2004, 144, 431–439. [Google Scholar] [CrossRef]
  17. Shen, Y.; Qiu, D.; Chen, W. Fixed point theorems in fuzzy metric spaces. Appl. Math. Lett. 2012, 25, 138–141. [Google Scholar] [CrossRef] [Green Version]
  18. Wang, S.; Alsulami, S.M.; Ćirić, L. Common fixed point theorems for nonlinear contractive mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2013, 2013, 191. [Google Scholar] [CrossRef] [Green Version]
  19. Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 314–334. [Google Scholar] [CrossRef] [Green Version]
  20. Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Trends in Logic 8; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
  21. Hadžić, O.; Pap, E.; Budinčević, M. Countable extension of triangular norms and their applications to the Fixed Point Theory in Probabilistic Metric Spaces. Kybernetika 2002, 38, 363–382. [Google Scholar]
  22. Kumam, P.; Dung, N.V.; Sitytithakerngkiet, K. A generalization of Ćirić fixed point theorems. Filomat 2015, 29, 1549–1556. [Google Scholar] [CrossRef] [Green Version]
  23. Gregori, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
  24. Mihet, D. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 2010, 159, 739–744, Erratum in Fuzzy Sets Syst. 2010, 161, 1150–1151.. [Google Scholar] [CrossRef]
  25. Wardowski, D. Fuzzy contractive mappings and fixed points in fuzzy metric space. Fuzzy Sets Syst. 2013, 222, 108–114. [Google Scholar] [CrossRef]
  26. Gregori, V.; Minana, J.-J. Some remarks on fuzzy contractive mappings. Fuzzy Sets Syst. 2014, 251, 101–103. [Google Scholar] [CrossRef]
  27. Amini-Harandi, A.; Mihet, D. Quasi-contractive mappings in fuzzy metric spaces. Iran. J. Fuzzy Syst. 2015, 12, 147–153. [Google Scholar]
  28. Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Rakić, D.; Došenović, T.; Mitrović, Z.D.; de la Sen, M.; Radenović, S. Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces. Mathematics 2020, 8, 297. https://doi.org/10.3390/math8020297

AMA Style

Rakić D, Došenović T, Mitrović ZD, de la Sen M, Radenović S. Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces. Mathematics. 2020; 8(2):297. https://doi.org/10.3390/math8020297

Chicago/Turabian Style

Rakić, Dušan, Tatjana Došenović, Zoran D. Mitrović, Manuel de la Sen, and Stojan Radenović. 2020. "Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces" Mathematics 8, no. 2: 297. https://doi.org/10.3390/math8020297

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop