Next Article in Journal
A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies
Previous Article in Journal
Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Relations between Residuated Frames and Residuated Connections

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 25457, Korea
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2020, 8(2), 295; https://doi.org/10.3390/math8020295
Submission received: 6 January 2020 / Revised: 14 February 2020 / Accepted: 17 February 2020 / Published: 21 February 2020
(This article belongs to the Section Fuzzy Sets, Systems and Decision Making)

Abstract

:
We introduce the notion of (dual) residuated frames as a viewpoint of relational semantics for a fuzzy logic. We investigate the relations between (dual) residuated frames and (dual) residuated connections as a topological viewpoint of fuzzy rough sets in a complete residuated lattice. As a result, we show that the Alexandrov topology induced by fuzzy posets is a fuzzy complete lattice with residuated connections. From this result, we obtain fuzzy rough sets on the Alexandrov topology. Moreover, as a generalization of the Dedekind–MacNeille completion, we introduce R-R (resp. D R - D R ) embedding maps and R-R (resp. D R - D R ) frame embedding maps.

1. Introduction

Blyth and Janovitz [1] introduced the residuated connection as a pair ( f , g ) of maps from a partially ordered set ( X , X ) to a partially ordered set ( Y , Y ) such that for all x X , y Y , f ( x ) Y y if and only if x X g ( y ) . Examples of maps which form residuated connections play an important role [2,3,4]. Orłowska and Rewitzky [5,6,7] introduced the residuated frame of logical relational systems for residuated connections.
Pawlak [8,9] introduced the rough set theory as a formal tool to deal with imprecision and uncertainty in the data analysis. Rough sets form residuated connections in the following sense: let R be an equivalence relation on X. For A X and [ x ] R = { y X | ( x , y ) R } ,
R ¯ ( A ) = { x X | [ x ] R A } , R ̲ ( A ) = { x X | [ x ] R A } .
Let P ( X ) be the class of all subsets of X and ( P ( X ) , ) be a partially ordered set. A rough set ( R ̲ , R ¯ ) forms a residuated connection because for all A , B X , R ¯ ( A ) B if and only if A R ̲ ( B ) .
Ward et al. [10] introduced a complete residuated lattice L as an important algebraic structure for many valued logics [11,12,13,14,15,16]. For an extension of Pawlak’s rough sets, many researchers have developed L-lower and L-upper approximation operators in algebraic structures L [17,18,19,20,21,22,23,24,25]. She and Wang [26] developed an L-fuzzy rough set ( G , H ) with L-lower approximation operator G and L-upper approximation operator F in complete residuated lattices as follows. Let ( X , e X ) be an L-fuzzy partially ordered set. For A , B L X ,
F ( A ) ( y ) = x X ( e X ( x , y ) A ( x ) ) , G ( B ) ( x ) = y X e X ( x , y ) B ( y ) .
Moreover, fuzzy rough sets form residuated connections in the following sense: for all A , B X ,
e L Y ( F ( A ) , B ) = y X ( F ( A ) ( y ) B ( y ) ) = x X ( A ( x ) G ( B ) ( x ) ) = e L X ( A , G ( B ) ) .
Perfilieva [27,28,29,30] introduced the theory of fuzzy transform and inverse fuzzy transform in complete residuated lattices, which is similar to other well-known transform theories such as the Fourier, Laplace, Hilbert and wavelet transforms, as well as fuzzy various concept analysis and fuzzy relation equations [31,32,33]. Oh and Kim [34] interpreted Perfilieva’s fuzzy transform as a residuated connection ( e L X , F , G , e L Y ) with fuzzy transform and inverse fuzzy transform G. By using the residuated connection, F is a fuzzy join preserving map and G is a fuzzy meet preserving map in a Kim’s fuzzy complete lattice sense [20], as a generalization of a complete lattice [35,36,37,38]. If X and Y are solutions of fuzzy relation equations F ( X ) = B and G ( Y ) = A , then G ( B ) and F ( A ) are solutions, respectively.
Discrete and stone dualities are dualities between algebras and logical relational systems such as Boolean algebras and classical propositional logics; MV-algebra and Lukasiewicz logic; and BL-algebra and basic fuzzy logics [3,4,5,6,39,40,41]. The duality leads in a natural way to relational semantics for a logic [39,40,41].
In this paper, as a duality between algebras and logical relational systems, we introduce the notion of residuated connections and residuated frames in fuzzy logics. In Theorems 3 and 4, we show that (dual) residuated frames induce (dual) residuated connections.
Let ( X , e X ) be an L-fuzzy partially ordered set. As a generalization of the classic Tarski’s fixed point theorem [42,43] for isotone maps, we show that τ e X = { A L X | A = F ( A ) = x X ( e X ( x , y ) A ( x ) ) } is an Alexandrov L-topology and ( τ e X , , , e τ e X ) is a fuzzy complete lattice [20].
If ( e X , R , S , e Y ) is a residuated frame, then we show that F : τ e X τ e Y and G : τ e Y τ e X are well-defined and ( e τ e X , F , G , e τ e Y ) is a residuated connection; e τ e Y ( F ( A ) , B ) = e τ e X ( A , G ( B ) ) is defined by
F ( A ) ( y ) = x X ( A ( x ) R ( x , y ) ) , G ( B ) ( x ) = y Y ( S ( y , x ) B ( y ) )
where τ e X and τ e Y are Alexandrov L-topologies induced by fuzzy posets ( X , e X ) and ( Y , e Y ) in Theorem 1. Using this result, one can show that the pair ( F ( A ) , G ( A ) ) is an fuzzy rough set for A on τ e X because ( e X , R = e X , S = e X 1 , e X ) is a residuated frame. Moreover, we show the existence of fuzzy rough sets from residuated connections.
Similarly, by Theorem 4, dual residuated frames induce dual residuated connections. In Theorem 5 (resp. 9), (resp. dual) residuated connections induce (resp. dual) residuated frames. Under various relations, we investigate the (dual) residuated connections and frames on Alexandrov L-topologies.
As a generalization of the Dedekind–MacNeille completion [37], we prove the existence of R-R (resp. D R - D R ) embedding maps and R-R (resp. D R - D R ) frame embedding maps.

2. Preliminaries

Definition 1
([10]). An algebra ( L , , , , , , ) is called a complete residuated lattice if it satisfies the following conditions:
(L1) 
( L , , , , , ) is a complete lattice with the greatest elementand the least element ⊥;
(L2) 
( L , , ) is a commutative monoid;
(L3) 
x y z if and only if x y z for x , y , z L .
In this paper, we always assume that ( L , , , , ) is a complete residuated lattice with x = x and ( x ) = x .
For α L , A L X , we denote ( α A ) , ( α A ) , α X L X by ( α A ) ( x ) = α A ( x ) , ( α A ) ( x ) = α A ( x ) , α X ( x ) = α .
Lemma 1
([2]). Let x , y , z , x i , y i , w L . Then the following hold:
(1)
x = x , x = ;
(2)
If y z , then x y x z , x y x z and z x y x ;
(3)
x y if and only if x y = ;
(4)
x ( i y i ) = i ( x y i ) ;
(5)
( i x i ) y = i ( x i y ) ;
(6)
x ( i y i ) = i ( x y i ) ;
(7)
( x y ) z = x ( y z ) = y ( x z ) ;
(8)
( x y ) ( z w ) ( x z ) ( y w ) and x y ( x z ) ( y z ) ;
(9)
( x y ) ( y z ) x z ;
(10)
i Γ x i i Γ y i i Γ ( x i y i ) and i Γ x i i Γ y i i Γ ( x i y i ) ;
(11)
x y ( y z ) ( x z ) and x y ( z x ) ( z y ) ;
(12)
( x y ) = x y and x y = y x .
Definition 2
([21]). Let X be a set. A function e X : X × X L is called:
(E1) 
Reflexive if e X ( x , x ) = for all x X ;
(E2) 
Transitive if e X ( x , y ) e X ( y , z ) e X ( x , z ) , for all x , y , z X ;
(E3) 
If e X ( x , y ) = e X ( y , x ) = , then x = y . If e X satisfies (E1) and (E2), then ( X , e X ) is called a fuzzy preorder set. Ifesatisfies (E1), (E2) and (E3), then ( X , e X ) is called a fuzzy partially order set (simply, fuzzy poset).
Definition 3
([18]). (1) A subset τ X L X is called an Alexandrov L-topology on X if it satisfies the following conditions:
(O1) 
α X τ X ;
(O2) 
If A i τ X for all i I , then i I A i , i I A i τ X ;
(O3) 
If A τ X and α L , then α A , α A τ X . The pair ( X , τ X ) is called an Alexandrov L-topological space.
Lemma 2.
Let τ X L X . Define e τ X : τ X × τ X L by e τ X ( A , B ) = x X ( A ( x ) B ( x ) ) . Then ( τ X , e τ X ) is a fuzzy poset.
Proof. 
(E1) For all A τ X , we have e τ X ( A , A ) = x X ( A ( x ) A ( x ) ) = .
(E2) Let A , B , C τ X . Then by Lemma 1(9), we have
e τ X ( A , B ) e τ X ( B , C ) = x X ( A ( x ) B ( x ) ) x X ( B ( x ) C ( x ) ) x X ( ( A ( x ) B ( x ) ) ( B ( x ) C ( x ) ) ) e τ X ( A , C ) .
(E3) Let e τ X ( A , B ) = e τ X ( B , A ) = . Then by Lemma 1(3), A = B .
Hence ( τ X , e τ X ) is a fuzzy poset. □
Theorem 1.
([18]) Let ( X , e X ) be a fuzzy poset. Define
τ e X = { A L X | A ( x ) e X ( x , z ) A ( z ) } .
Then τ e X is an Alexandrov L-topology on X.
Remark 1.
(1) Let ( X , X ) be a fuzzy poset where X ( x , x ) = and X ( x , y ) = for x y X . Then τ X = L X and e τ X = e L X : L X × L X L as e L X ( A , B ) = x X ( A ( x ) B ( x ) ) .
(2) Let ( X , X × X ) be a fuzzy poset where X × X ( x , y ) = for each x , y X . Then τ X × X = { α X L X | α L } and e τ X × X : τ X × X × τ X × X L by e τ X × X ( α X , β X ) = α β .

3. Fuzzy Residuated Frames and Fuzzy Residuated Connections on Alexandrov L -topologies

Definition 4.
Let ( X , e X ) and ( Y , e Y ) be fuzzy posets. Let f : X Y and g : Y X be maps.
(1) ( e X , f , g , e Y ) is a residuated connection if e Y ( f ( x ) , y ) = e X ( x , g ( y ) ) for all x X , y Y ;
(2) ( e X , f , g , e Y ) is a dual residuated connection if e Y ( y , f ( x ) ) = e X ( g ( y ) , x ) for all x X , y Y ;
(3) f is an isotone map if e Y ( f ( x 1 ) , f ( x 2 ) ) e X ( x 1 , x 2 ) for all x 1 , x 2 X ;
(4) f is an antitone map if e Y ( f ( x 1 ) , f ( x 2 ) ) e X ( x 2 , x 1 ) for all x 1 , x 2 X ;
(5) f is an embedding map if e Y ( f ( x 1 ) , f ( x 2 ) ) = e X ( x 1 , x 2 ) for all x 1 , x 2 X .
Theorem 2.
Let ( X , e X ) and ( Y , e Y ) be fuzzy posets. Let f : X Y and g : Y X be maps.
(1) ( e X , f , g , e Y ) is a residuated connection if and only if f , g are isotone maps and e Y ( f ( g ( y ) ) , y ) = e X ( x , g ( f ( x ) ) ) = for all x , y X ;
(2) ( e X , f , g , e Y ) is a dual residuated connection if and only if f , g are isotone maps and e Y ( y , f ( g ( y ) ) ) = e X ( g ( f ( x ) ) , x ) = for all x , y X .
Proof. 
(1) Let ( f , g ) be a residuated connection. Since e Y ( f ( x ) , y ) = e X ( x , g ( y ) ) , we have = e Y ( f ( x ) , f ( x ) ) = e X ( x , g ( f ( x ) ) ) and e Y ( f ( g ( y ) ) , y ) = e X ( g ( y ) , g ( y ) ) = . Furthermore,
e Y ( f ( x 1 ) , f ( x 2 ) ) = e X ( x 1 , g ( f ( x 2 ) ) ) e X ( x 1 , x 2 ) e X ( x 2 , g ( f ( x 2 ) ) ) = e X ( x 1 , x 2 ) .
Conversely,
e Y ( f ( x ) , y ) e Y ( f ( g ( y ) ) , y ) e Y ( f ( x ) , f ( g ( y ) ) ) = e Y ( f ( x ) , f ( g ( y ) ) ) e X ( x , g ( y ) ) .
Similarly, e Y ( f ( x ) , y ) e X ( x , g ( y ) ) .
(2) Since e Y ( f ( x ) , y ) = e X ( g ( y ) , x ) , we have = e Y ( f ( x ) , f ( x ) ) = e X ( g ( f ( x ) ) , x ) and e Y ( f ( g ( y ) ) , y ) = e X ( g ( y ) , g ( y ) ) = . Furthermore,
e Y ( f ( x 1 ) , f ( x 2 ) ) = e X ( g ( f ( x 2 ) ) , x 1 ) e X ( x 2 , x 1 ) e X ( g ( f ( x 2 ) ) , x 2 ) = e X ( x 2 , x 1 ) .
For R 1 L X × Y and R 2 L Y × Z , define
R 1 R 2 ( x , z ) = y ( R 1 ( x , y ) R 2 ( y , z ) ) , R 1 1 ( y , x ) = R 1 ( x , y ) .
Lemma 3.
Let ( X , e X ) and ( X , e Y ) be fuzzy posets. Let R L X × Y . Then the following hold:
(1)
( e X R ) 1 = R 1 e X 1 and ( R e X ) 1 = e X 1 R 1 ;
(2)
e X R R if and only if e X 1 R R ;
(3)
R e X 1 R if and only if R e X R ;
(4)
e X R e Y R if and only if e X R R and R e Y R ;
(5)
e X 1 R e Y 1 R if and only if e X 1 R R and R e Y 1 R ;
(6)
e X 1 R e Y 1 R if and only if e X R e Y R .
Proof. 
(1) ( e X R ) 1 ( y , x ) = e X R ( x , y ) = z X ( e X ( x , z ) R ( z , y ) ) = z X ( e X 1 ( z , x ) R 1 ( y , z ) ) = R 1 e X 1 ( y , x ) . Similarly, ( R e X ) 1 = e X 1 R 1 .
(2) e X ( x , z ) R ( z , y ) R ( x , y ) if and only if R ( z , y ) e X ( x , z ) R ( x , y ) if and only if e X ( x , z ) R ( x , y ) R ( z , y ) if and only if e X 1 ( z , x ) R ( x , y ) R ( z , y ) .
(3) R ( w , y ) e X 1 ( y , x ) R ( w , x ) if and only if R ( w , y ) e X ( x , y ) R ( w , x ) if and only if e X ( x , y ) R ( w , y ) R ( w , x ) if and only if e X ( x , y ) R ( w , x ) R ( w , y ) .
(4) e X R e Y ( x , y ) = y 1 Y ( e X R ) ( x , y 1 ) e Y ( y 1 , y ) ( e X R ) ( x , y ) e Y ( y , y ) = ( e X R ) ( x , y ) . Similarly, R e Y R . The converse part can be proved easily.
(5) and (6) can be proved easily by using (2)–(4). □
Definition 5.
Let ( X , e X ) and ( Y , e Y ) be fuzzy posets. Let R L X × Y and S L Y × X . A structure ( e X , R , S , e Y ) is called:
(1) A residuated frame if S = R 1 and e X R e Y R ;
(2) A dual residuated frame if S = R 1 and e X 1 R e Y 1 R .
Lemma 4.
Let ( X , e X ) and ( Y , e Y ) be fuzzy posets. Then the following hold:
(1)
Let ( e X , f , g , e Y ) be a residuated connection. Define maps R : X × Y L and S : Y × X L by
R ( x , y ) = e X ( x , g ( y ) ) = e Y ( f ( x ) , y ) , S ( y , x ) = R ( x , y ) .
Then ( e X , R , S , e Y ) is a residuated frame;
(2)
Let ( e X , f , g , e Y ) be a dual residuated connection. Define maps R : X × Y L and S : Y × X L by
R ( x , y ) = e X ( g ( y ) , x ) = e Y ( y , f ( x ) ) , S ( y , x ) = R ( x , y ) .
Then ( e X , R , S , e Y ) is a dual residuated frame;
(3)
If g is isotone and R 1 ( x , y ) = e X ( x , g ( y ) ) (resp. R 2 ( x , y ) = e X ( g ( y ) , x ) ), then e X R 1 e Y R 1 (resp. e X 1 R 2 e Y 1 R 2 );
(4)
If f is isotone and R 1 ( x , y ) = e Y ( y , f ( x ) ) (resp. R 2 ( x , y ) = e Y ( f ( x ) , y ) ), then e X 1 R 1 e Y 1 R 1 (resp. e X R 2 e Y R 2 ).
Proof. 
(1) For all x , x 1 X and y , y 1 Y ,
e X ( x , x 1 ) R ( x 1 , y 1 ) e Y ( y 1 , y ) = e X ( x , x 1 ) e X ( x 1 , g ( y 1 ) ) e Y ( y 1 , y ) e X ( x , g ( y 1 ) ) e X ( y 1 , y ) = e Y ( f ( x ) , y 1 ) e Y ( y 1 , y ) e Y ( f ( x ) , y ) = R ( x , y ) .
Hence e X R e Y R .
(3) For all x , x 1 X and y , y 1 Y ,
e X ( x , x 1 ) R 1 ( x 1 , y 1 ) e Y ( y 1 , y ) = e X ( x , x 1 ) e X ( x 1 , g ( y 1 ) ) e Y ( y 1 , y ) e X ( x , x 1 ) e X ( x 1 , g ( y 1 ) ) e X ( g ( y 1 ) , g ( y ) ) e X ( x , x 1 ) e X ( x 1 , g ( y ) ) e X ( x , g ( y ) ) = R ( x , y ) .
Hence e X R 1 e Y R 1 .
(2) and (4) can be proved similarly. □
Theorem 3.
Let ( e X , R , S , e Y ) be a residuated frame. Let τ e X and τ e Y be Alexandrov L-topologies. Then the following hold:
(1)
( e τ e X , F , G , e τ e Y ) is a residuated connection where
F ( A ) ( y ) = x X ( A ( x ) R ( x , y ) ) , G ( B ) ( x ) = y Y ( S ( y , x ) B ( y ) ) ;
(2)
( e τ e X , F , G , e τ e Y ) is an dual residuated connection where
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y Y ( R ( x , y ) B ( y ) ) .
Proof. 
(1) Since R e Y R and e X R R by Lemma 3(4), we have F ( A ) τ e Y and G ( B ) τ e X from:
F ( A ) ( y ) e Y ( y , w ) = x X ( A ( x ) R ( x , y ) e Y ( y , w ) ) x X ( A ( x ) R ( x , w ) ) = F ( A ) ( w ) ,
and
G ( B ) ( x ) e X ( x , z ) R ( z , y ) y Y ( ( R ( x , y ) B ( y ) ) R ( x , y ) ) B ( y ) G ( B ) ( x ) e X ( x , z ) G ( B ) ( z ) .
Moreover, for all A τ e X and B τ e Y ,
e τ e Y ( F ( A ) , B ) = y Y ( F ( A ) ( y ) B ( y ) ) = y Y x Y ( R ( x , y ) A ( x ) ) B ( y ) = x X y Y A ( x ) ( R ( x , y ) B ( y ) ) = x X A ( x ) x X ( R ( x , y ) B ( y ) ) = x X A ( x ) G ( B ) ( x ) = e τ e X ( A , G ( B ) ) .
(2) Since R e Y 1 R and e X 1 R R by Lemma 3 (5)–(6), we have
F ( A ) ( y ) e Y ( y , w ) R ( x , w ) = ( x X ( R ( x , y ) A ( x ) ) ) e Y ( y , w ) R ( x , w ) x X ( R ( x , y ) A ( x ) R ( x , y ) ) A ( x ) , G ( B ) ( x ) e X ( x , z ) y Y ( ( R ( x , y ) B ( y ) ) e X ( x , z ) ) y Y ( R ( z , y ) B ( y ) ) = G ( B ) ( z ) .
Thus F ( A ) τ e Y and G ( B ) τ e X .
Moreover, for all A τ e X and B τ e Y ,
e τ e X ( G ( B ) , A ) = x X ( G ( B ) ( x ) A ( x ) ) = x X y Y ( R ( x , y ) B ( y ) ) A ( x ) = x X y Y B ( y ) ( R ( x , y ) A ( x ) ) = y Y B ( y ) x X ( R ( x , y ) A ( x ) ) = y Y B ( y ) F ( A ) ( y ) = e τ e Y ( B , F ( A ) ) .
Remark 2.
Since ( X , e X , e X 1 , X ) is a residuated frame where e X is a fuzzy poset and τ X = L X by Remark 1(1), ( e L X , F , G , e L X ) is a residuated connection where
F ( A ) ( y ) = x X ( A ( x ) e X ( x , y ) ) , G ( B ) ( x ) = y X ( e X ( x , y ) B ( y ) ) .
The pair ( G , F ) is a fuzzy rough set ([26]).
Theorem 4.
Let ( e X , R , S , e Y ) be a dual residuated frame. Let τ e X and τ e Y be Alexandrov L-topologies. Then the following hold:
(1) ( e τ e X , F , G , e τ e Y ) is a dual residuated connection where
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y Y ( R ( x , y ) B ( y ) ) ;
(2) ( e τ e X , F , G , e τ e Y ) is a residuated connection where
F ( A ) ( y ) = x X ( A ( x ) R ( x , y ) ) , G ( B ) ( x ) = y Y ( R ( x , y ) B ( y ) ) .
Proof. 
(1) Since R e Y 1 R and e X 1 R R by Lemma 3(5), we have
F ( A ) ( y ) e Y ( y , w ) R ( x , w ) = ( x X ( R ( x , y ) A ( x ) ) ) e Y 1 ( w , y ) R ( x , w ) x X ( R ( x , y ) A ( x ) R ( x , y ) ) A ( x ) , G ( B ) ( x ) e X ( x , z ) y Y ( R ( x , y ) B ( y ) e X ( x , z ) ) G ( B ) ( z ) .
Moreover, for all A τ e X and B τ e Y ,
e τ e X ( G ( B ) , A ) = x X ( G ( B ) ( x ) A ( x ) ) = x X y Y ( R ( x , y ) B ( y ) ) A ( x ) = x X y Y B ( y ) ( R ( x , y ) A ( x ) ) = y Y B ( y ) x X ( R ( x , y ) A ( x ) ) = y Y B ( y ) F ( A ) ( y ) = e τ e Y ( B , F ( A ) ) .
Thus F ( A ) τ e Y and G ( B ) τ e X .
(2) Since R e Y R and e X R R by Lemma 3(2–3), we have
F ( A ) ( y ) e Y ( y , w ) = x X ( A ( x ) R ( x , y ) e Y ( y , w ) ) x X ( A ( x ) R ( x , w ) ) = F ( A ) ( w ) , G ( B ) ( x ) e X ( x , z ) R ( z , y ) y Y ( ( R ( x , y ) B ( y ) ) R ( x , y ) ) B ( y ) .
Thus F ( A ) τ e Y and G ( B ) τ e X .
Moreover, for all A τ e X , and B τ e Y ,
e τ e Y ( F ( A ) , B ) = y Y ( F ( A ) ( y ) B ( y ) ) = y Y x Y ( R ( x , y ) A ( x ) ) B ( y ) = x X y Y A ( x ) ( R ( x , y ) B ( y ) ) = x X A ( x ) x X ( R ( x , y ) B ( y ) ) = x X A ( x ) G ( B ) ( x ) = e τ e X ( A , G ( B ) ) .
Remark 3.
Since ( X , e X , e X 1 , X ) is a dual residuated frame where e X is a fuzzy poset and τ X = L X by Remark 1(1), ( e L X , F , G , e L X ) is a dual residuated connection where
F ( A ) ( y ) = x X ( e X ( x , y ) A ( x ) ) , G ( B ) ( x ) = y X ( e X ( x , y ) B ( y ) ) .
Example 1.
Let ( X , e X ) and ( Y , e Y ) be fuzzy posets. Let f : X Y and g : Y X be maps. Let τ e X and τ e Y be Alexandrov L-topologies.
(1) Let g be isotone and R ( x , y ) = e X ( x , g ( y ) ) . By Lemma 4(3), ( e X , R , S = R 1 , e Y ) is a residuated frame. By Theorem 3(1), ( e τ e X , F , G , e τ e Y ) is a residuated connection with
F ( A ) ( y ) = x X ( A ( x ) e X ( x , g ( y ) ) ) , G ( B ) ( x ) = y Y ( e X ( x , g ( y ) ) B ( y ) ) .
(2) Let g be isotone and R ( x , y ) = e X ( g ( y ) , x ) . By Lemma 4(3), ( e X , R , S = R 1 , e Y ) is a dual residuated frame. By Theorem 4(1), ( e τ e X , F , G , e τ e Y ) is a dual residuated connection where
F ( A ) ( y ) = y Y ( e X ( g ( y ) , x ) A ( x ) ) , G ( B ) ( x ) = y Y ( B ( y ) e X ( g ( y ) , x ) ) .
(3) Let f be isotone and R ( x , y ) = e Y ( y , f ( x ) ) . By Lemma 4(4), ( e X , R , S = R 1 , e Y ) is a dual residuated frame. By Theorem 4(1), ( e τ e X , F , G , e τ e X ) is a dual residuated connection where
F ( A ) ( y ) = x X ( e Y ( y , f ( x ) ) A ( x ) ) , G ( B ) ( y ) = y Y ( B ( y ) e Y ( y , f ( x ) ) ) .
(4) Let f be isotone and R ( x , y ) = e Y ( f ( x ) , y ) . By Lemma 4(4), ( e X , R , S = R 1 , e Y ) is a residuated frame. By Theorem 3(1), ( e τ e X , F , G , e τ e Y ) is a residuated connection where
F ( A ) ( y ) = x X ( e Y ( f ( x ) , y ) A ( x ) ) , G ( B ) ( y ) = y Y ( e Y ( f ( x ) , y ) B ( y ) ) .
Theorem 5.
Let ( X , e X ) and ( Y , e Y ) be fuzzy posets. Let τ e X and τ e Y be Alexandrov L-topologies. Then the following hold:
(1) ( e X , f , g , e Y ) is a residuated connection. That is, e Y ( f ( x ) , y ) = e X ( x , g ( y ) ) for all x , y X if and only if there exist relations R : τ e X × τ e Y L and S : τ e Y × τ e X L by
R ( A , B ) = x X ( A ( x ) B ( f ( x ) ) ) , S ( B , A ) = y Y ( A ( g ( y ) ) B ( y ) )
with isotone maps f : X Y , g : Y X such that ( e τ e X , R , S , e τ e Y ) is a residuated frame.
(2) In ( 1 ) ,
R ( A , B ) = e τ e X ( A , f ( B ) ) = e τ e Y ( F ( A ) , B ) = e τ e X ( A , G ( B ) )
where F ( A ) ( y ) = z X ( e Y ( f ( z ) , y ) A ( z ) ) and G ( B ) = y Y ( e Y ( f ( z ) , y ) B ( y ) ) ) .
S ( B , A ) = e τ e Y ( g ( A ) , B ) = e τ e Y ( F 1 ( A ) , B ) = e τ e X ( A , G 1 ( B ) )
where F 1 ( A ) ( w ) = z X ( e Y ( z , g ( w ) ) A ( z ) ) and G 1 ( B ) ( z ) = w Y ( e Y ( z , g ( w ) ) B ( w ) ) .
Proof. 
(1) ( ) Let A τ e X and B τ e Y . Since B ( f ( g ( y ) ) ) e Y ( f ( g ( y ) ) , y ) B ( y ) , e Y ( f ( g ( y ) ) , y ) = , A ( x ) e X ( x , g ( f ( x ) ) ) A ( g ( f ( x ) ) ) and e X ( x , g ( f ( x ) ) ) = ,
R ( A , B ) = x X ( A ( x ) B ( f ( x ) ) ) y Y ( A ( g ( y ) ) B ( f ( g ( y ) ) ) e Y ( f ( g ( y ) ) , y ) ) y Y ( A ( g ( y ) ) B ( y ) ) = S ( B , A )
and
S ( B , A ) = x X ( A ( g ( y ) ) B ( y ) ) x X ( A ( g ( f ( x ) ) ) B ( f ( x ) ) ) y X ( A ( x ) e X ( x , g ( f ( x ) ) ) B ( f ( x ) ) ) = R ( A , B ) .
Thus we have R ( A , B ) = S ( B , A ) . For all A , A 1 τ e X , B , B 1 τ e Y , we have
e τ e X ( A , A 1 ) R ( A 1 , B 1 ) e τ e Y ( B 1 , B ) = e τ e X ( A , A 1 ) x X ( A 1 ( x ) B 1 ( f ( x ) ) ) x X ( B 1 ( f ( x ) ) B ( f ( x ) ) ) x X ( A ( x ) B ( f ( x ) ) ) = R ( A , B ) .
Thus e τ e X R e τ e Y R .
( ) Since e Y ( z , w ) e Y ( w , y ) e Y ( z , y ) if and only if ( e Y ) y 1 ( z ) e Y ( z , w ) ( e Y ) y 1 ( w ) , we have ( e Y ) y 1 τ e Y . For all ( e X ) x τ e X and ( e Y ) y 1 τ e Y ,
R ( ( e X ) x , ( e Y ) y 1 ) = z X ( ( e X ) x ( z ) ( e Y ) y 1 ( f ( z ) ) ) ( e X ) x ( x ) ( e Y ) y 1 ( f ( x ) ) = e Y ( f ( x ) , y ) .
Since e X ( x , z ) e Y ( f ( z ) , y ) e Y ( f ( x ) , f ( z ) ) e Y ( f ( z ) , y ) e Y ( f ( x ) , y ) , we have e X ( x , z ) e Y ( f ( z ) , y ) e Y ( f ( x ) , y ) . Hence R ( ( e X ) x , ( e Y ) y 1 ) = e Y ( f ( x ) , y ) . Moreover,
S ( ( e Y ) y 1 , ( e X ) x ) = z X ( ( e X ) x ( g ( z ) ) ( e Y ) y 1 ( z ) ) ( e X ) x ( g ( y ) ) ( e Y ) y 1 ( y ) = e X ( x , g ( y ) ) .
Since e X ( x , g ( z ) ) e Y ( z , y ) e X ( x , g ( z ) ) e X ( g ( z ) , g ( y ) ) e X ( x , g ( y ) ) , we have e X ( x , g ( z ) ) e Y ( z , y ) e X ( x , g ( y ) ) . Hence S ( ( e Y ) y 1 , ( e X ) x ) = e X ( x , g ( y ) ) . Now, from
R ( ( e X ) x , ( e Y ) y 1 ) = e Y ( f ( x ) , y ) = S ( ( e Y ) y 1 , ( e X ) x ) = e X ( x , g ( y ) ) ,
we have e Y ( f ( x ) , y ) = e X ( x , g ( y ) ) for all x , y X .
(2) Let A τ e X and B τ e Y . Since A = z X ( A ( z ) e X ( z , ) ) and B = y Y ( B ( y ) e Y ( , y ) ) , we have
R ( A , B ) = x X ( A ( x ) B ( f ( x ) ) ) = x X ( z X ( A ( z ) e X ( z , x ) ) y Y ( B ( y ) e Y ( f ( x ) , y ) ) ) = x , z X y Y ( A ( z ) B ( y ) ( e X ( z , x ) e Y ( f ( x ) , y ) ) ) = z X y Y ( A ( z ) B ( y ) x X ( e X ( z , x ) e Y ( f ( x ) , y ) ) ) = z X y Y ( A ( z ) B ( y ) e Y ( f ( z ) , y ) ) = y Y ( z X ( e Y ( f ( z ) , y ) A ( z ) ) B ( y ) ) = e τ e Y ( F ( A ) , B ) = z X ( A ( z ) y Y ( e Y ( f ( z ) , y ) B ( y ) ) ) = e τ e X ( A , G ( B ) )
and
S ( B , A ) = y Y ( A ( g ( y ) ) B ( y ) ) = y Y ( z X ( A ( z ) e X ( z , g ( y ) ) ) w Y ( B ( w ) e Y ( y , w ) ) ) = y , w Y z X ( A ( z ) B ( w ) ( e X ( z , g ( y ) ) e Y ( y , w ) ) ) = w Y z X ( A ( z ) B ( w ) y Y ( e X ( z , g ( y ) ) e Y ( y , w ) ) ) = w Y z X ( A ( z ) B ( w ) e Y ( z , g ( w ) ) ) = w Y ( z X ( e Y ( z , g ( w ) ) A ( z ) ) B ( w ) ) = e τ e Y ( F 1 ( A ) , B ) = z X ( A ( z ) w Y ( e Y ( z , g ( w ) ) B ( w ) ) ) = e τ e X ( A , G 1 ( B ) ) .
Example 2.
Let ( L X , F , G , L Y ) be a residuated connection where for R L X × Y ,
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y Y ( R ( x , y ) B ( y ) ) .
Let τ e L X = { α L L X | α ( A ) e L X ( A , B ) α ( B ) } and τ e L Y = { β L L Y | β ( A ) e L Y ( A , B ) β ( B ) } . Define two maps T 1 , S 1 1 : τ e L X × τ e L Y L by
T 1 ( α , β ) = A L X ( α ( A ) β ( F ( A ) ) ) , S 1 ( β , α ) = B L X ( α ( G ( B ) ) β ( B ) ) .
Then ( e τ e L X , T 1 , S 1 , e τ e L Y ) is a residuated frame.
Theorem 6.
Let ( X , e X ) be a fuzzy poset. Let τ e X be an Alexandrov L-topology. Let τ e τ e X = { α L τ e X | α ( A ) e τ e X ( A , B ) α ( B ) } . Define a map h : X τ e τ e X by h ( x ) ( A ) = x ^ ( A ) = A ( x ) . Then h : ( X , e X ) ( τ e τ e X , e τ e τ e X ) is an embedding map.
Proof. 
Assume that h ( x ) ( A ) = h ( y ) ( A ) for all A τ e X . Then h ( x ) ( ( e X ) x ) = h ( y ) ( ( e X ) x ) = e X ( x , y ) = for ( e X ) x τ e X , and h ( x ) ( ( e X ) y ) = h ( y ) ( ( e X ) y ) = e X ( y , x ) = for ( e X ) y τ e X . Thus x = y . Hence h is injective.
Since
x ^ ( A ) e τ e X ( A , B ) = x ^ ( A ) y X ( A ( y ) B ( y ) ) A ( x ) ( A ( x ) B ( x ) ) B ( x ) = x ^ ( B ) ,
we have h ( x ) = x ^ τ e τ e X . Let A τ e X . Since A ( x ) = y Y ( e X ( x , y ) A ( y ) ) , we have
e X ( x , y ) A τ e X ( A ( x ) A ( y ) ) = A τ e X ( x ^ ( A ) y ^ ( A ) ) = e τ e τ e X ( x ^ , y ^ ) .
Let ( e X ) z ( x ) = e X ( z , x ) . Since ( e X ) z ( x ) e X ( x , y ) ( e X ) z ( y ) , we have ( e X ) z τ e X for all z X . Note that
e τ e τ e X ( x ^ , y ^ ) = A τ e X ( A ( x ) A ( y ) ) ( e X ) z τ e X ( ( e X ) z ( x ) ( e X ) z ( y ) ) = z X ( e X ( z , x ) e X ( z , y ) ) = e X ( x , y ) .
Hence e τ e τ e X ( x ^ , y ^ ) = e X ( x , y ) .
Definition 6.
Let ( e X , f , g , e X ) and ( e Z , f ˜ , g ˜ , e Z ) be residuated connections. An injective function k : ( e X , f , g , e X ) ( e Z , f ˜ , g ˜ , e Z ) is an R-R embedding if
e X ( x , y ) = e Z ( k ( x ) , k ( y ) ) , e X ( f ( x ) , y ) = e Z ( f ˜ ( k ( x ) ) , k ( y ) ) , e X ( x , g ( y ) ) = e Z ( k ( x ) , g ˜ ( k ( y ) ) ) .
If k is a bijective R-R embedding map, then k is called an R-R isomorphism.
Theorem 7.
Let ( e X , f , g , e X ) be a residuated connection, τ e X be an Alexandrov L-topology and τ e τ e X = { α L τ e X | α ( A ) e τ e X ( A , B ) α ( B ) } . Define a map h : X τ e τ e X by h ( x ) ( A ) = x ^ ( A ) = A ( x ) . Then the map h : ( e X , f , g , e X ) ( e τ e τ e X , F , G , e τ e τ e X ) is an R-R embedding map with
e X ( x , y ) = e τ e τ e X ( x ^ , y ^ ) , F ( h ( x ) ) ( B ) = F ( x ^ ) ( B ) = f ( x ) ^ ( B )
for all B τ e X and G ( h ( y ) ) ( A ) = G ( y ^ ) ( A ) = g ( y ) ^ ( A ) for all A τ e X where
R ( A , B ) = x X ( A ( x ) B ( f ( x ) ) ) , S ( B , A ) = y X ( A ( g ( y ) ) B ( y ) ) ,
F ( x ^ ) ( B ) = A τ e X ( R ( A , B ) x ^ ( A ) ) , G ( y ^ ) ( A ) = B τ e X ( S ( B , A ) y ^ ( B ) ) .
Moreover, e τ e τ e X ( F ( x ^ ) , y ^ ) = e τ e τ e X ( x ^ , G ( y ^ ) ) .
Proof. 
By Theorem 6, h : ( X , e X ) ( τ e τ e X , e τ e τ e X ) is an embedding map. By Theorem 5(1), ( e τ e X , R , S , e τ e X ) is a residuated frame where
R ( A , B ) = x X ( A ( x ) B ( f ( x ) ) ) , S ( B , A ) = y X ( A ( g ( y ) ) B ( y ) ) .
By Theorem 3(1), ( e τ e τ e X , F , G , e τ e τ e X ) is a residuated connection where
F ( α ) ( B ) = A τ e X ( R ( A , B ) α ( A ) ) = A τ e X z X ( A ( z ) B ( f ( z ) ) ) α ( A ) ,
G ( α ) ( A ) = B τ e X ( S ( B , A ) α ( B ) ) = B τ e X z X ( A ( g ( z ) ) B ( z ) ) α ( B ) .
Moreover,
F ( x ^ ) ( B ) = A τ e X ( R ( A , B ) x ^ ( A ) ) = A τ e X z X ( A ( z ) B ( f ( z ) ) ) A ( x ) B ( f ( x ) ) = f ( x ) ^ ( B ) .
Since f is isotone and B τ e X , we have B ( f ( x ) ) e X ( x , y ) B ( f ( x ) ) e X ( f ( x ) , f ( y ) ) B ( f ( y ) ) . Hence f ( B ) τ e X .
Let A = f ( B ) . Note that
F ( x ^ ) ( B ) = A τ e X ( R ( A , B ) x ^ ( A ) ) z X ( f ( B ) ( z ) B ( f ( z ) ) ) f ( B ) ( x ) = B ( f ( x ) ) = f ( x ) ^ ( B ) .
Hence F ( x ^ ) = f ( x ) ^ . Note that
G ( y ^ ) ( A ) = B τ e X ( S ( B , A ) y ^ ( B ) ) = B τ e X z X ( A ( g ( z ) ) B ( z ) ) B ( y ) B τ e X A ( g ( y ) ) B ( y ) ) B ( y ) A ( g ( y ) ) = g ( y ) ^ ( A ) .
Since g is isotone, we have g ( A ) τ e X . Thus G ( y ^ ) g ( y ) ^ . Moreover,
e τ e τ e X ( F ( x ^ ) , y ^ ) = e τ e τ e X ( f ( x ) ^ , y ^ ) = e X ( f ( x ) , y ) = e X ( x , g ( y ) ) = e τ e τ e X ( x ^ , g ( y ) ^ ) = e τ e τ e X ( x ^ , G ( y ^ ) ) .
Definition 7.
Let ( e X , R , S , e X ) and ( e Z , R ˜ , S ˜ , e Z ) be residuated frames. An injective map k : ( e X , R , S , e X ) ( e Z , R ˜ , S ˜ , e Y ) is an R-R frame embedding if
e X ( x , y ) = e Z ( k ( x ) , k ( y ) ) , R ( x , y ) = R ˜ ( k ( x ) , k ( y ) ) , S ( x , y ) = S ˜ ( k ( x ) , k ( y ) ) .
If k is a bijective R-R embedding map, then k is called an R-R frame isomorphism.
Theorem 8.
Let ( e X , R , S , e X ) be a residual frame, τ e X be an Alexandrov L-topology and τ e τ e X = { α L τ e X | α ( A ) e τ e X ( A , B ) α ( B ) } . Define a map k : X τ e τ e X by k ( x ) ( A ) = x ^ ( A ) = A ( x ) . Then the map k : ( e X , R , S , e X ) ( e τ e τ e X , R ^ , S ^ , e τ e τ e X ) is an R-R frame embedding map with e ( x , y ) = e τ e τ e X ( k ( x ) , k ( y ) ) , R ( x , y ) = R ^ ( k ( x ) , k ( y ) ) = R ^ ( x ^ , y ^ ) and S ( x , y ) = S ^ ( k ( x ) , k ( y ) ) = S ^ ( x ^ , y ^ ) where
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y X ( R ( x , y ) B ( y ) ) ,
R ^ ( α , β ) = A τ e X ( α ( A ) β ( F ( A ) ) ) , S ^ ( β , α ) = B τ e X ( α ( G ( B ) ) β ( B ) ) .
Proof. 
By Theorem 6, k : ( X , e X ) ( τ e τ e X , e τ e τ e X ) is an embedding map. Hence e X ( x , y ) = e τ e τ e X ( x ^ , y ^ ) . By Theorem 3(1), ( e τ e X , F , G , e τ e X ) is a residuated connection where
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y X ( R ( x , y ) B ( y ) ) .
By Theorem 5(1), ( e τ e τ e X , R ^ , S ^ , e τ e τ e X ) is a residuated frame where
R ^ ( α , β ) = A τ e X ( α ( A ) β ( F ( A ) ) ) , S ^ ( β , α ) = B τ e X ( α ( G ( B ) ) β ( B ) ) .
Note that for all x ^ , y ^ τ e τ e X ,
R ^ ( x ^ , y ^ ) = A τ e X ( x ^ ( A ) y ^ ( F ( A ) ) ) = A τ e X ( A ( x ) F ( A ) ( y ) ) = A τ e X A ( x ) z X ( R ( z , y ) A ( z ) ) A τ e X A ( x ) ( R ( x , y ) A ( x ) ) R ( x , y ) .
Let ( e X ) x ( z ) = e X ( x , z ) . Then ( e X ) x τ e X . Since e X R e X R , we have e X R R . Thus
R ^ ( x ^ , y ^ ) = A τ e X A ( x ) z X ( R ( z , y ) A ( z ) ) ( e X ) x ( x ) z X ( R ( z , y ) ( e X ) x ( z ) ) = R ( x , y )
and
S ^ ( y ^ , x ^ ) = B τ e X ( x ^ ( G ( B ) ) y ^ ( B ) ) = B τ e X ( G ( B ) ( x ) B ( y ) ) = B τ e X z X ( R ( x , z ) B ( z ) ) B ( y ) B τ e X ( R ( x , y ) B ( y ) ) B ( y ) R ( x , y ) = S ( y , x ) .
Since R e X e X R e X R , we have R ( x , y ) e X ( y , w ) R ( x , w ) . Thus R x = R ( x , ) τ e X . Hence
S ^ ( y ^ , x ^ ) = B τ e X z X ( R ( x , z ) B ( z ) ) B ( y ) z X ( R ( x , z ) R x ( z ) ) R x ( y ) = R ( x , y ) = S ( y , x ) .
Corollary 1.
Let ( e X , R = e X , S = e X 1 , e X ) be a residual frame and τ e τ e X = { α L τ e X | α ( A ) e τ e X ( A , B ) α ( B ) } . Define a map k : X τ e τ e X by k ( x ) ( A ) = x ^ ( A ) = A ( x ) . Then the map
k : ( e X , R = e X , S = e X 1 , e X ) ( e τ e τ e X , R ^ = e X ^ , S ^ = e X 1 ^ , e τ e τ e X )
is an embedding map with e X ( x , y ) = e τ e τ e X ( k ( x ) , k ( y ) ) , e X ( x , y ) = e X ^ ( x ^ , y ^ ) and e X 1 ( x , y ) = e X 1 ^ ( x ^ , y ^ ) where
e X ^ ( x ^ , y ^ ) = A τ e X ( x ^ ( A ) y ^ ( F ( A ) ) ) = A τ e X ( A ( x ) z X ( e X ( z , y ) A ( z ) ) ) = e X ( x , y ) , e X 1 ^ ( y ^ , x ^ ) = A τ e X ( x ^ ( G ( B ) ) y ^ ( B ) ) = A τ e X ( z X ( e X ( x , z ) B ( z ) ) B ( y ) ) = e X 1 ( y , x ) .
Example 3.
Let X = { a , b , c } be a set. Let f : X X be a map by f ( a ) = b , f ( b ) = a , f ( c ) = c and f = f 1 . Define a binary operation ⊙ on L = [ 0 , 1 ] by
x y = max { 0 , x + y 1 } , x y = min { 1 x + y , 1 } .
(1) Let ( X = { a , b , c } , e X ) be a fuzzy poset where
e X = 1 0.6 0.5 0.6 1 0.5 0.7 0.7 1 .
Since e X ( x , y ) = e X ( f ( x ) , f ( y ) ) , e X ( x , f ( f ( x ) ) ) = e X ( f ( f ( x ) ) , x ) = 1 , we have that ( e X , f , f , e X ) are both residuated and dual residuated connections. Since ( e X , f , f , e X ) is a residuated connection, we have that e X ( f ( x ) , y ) = e X ( x , f ( y ) ) for all x , y X if and only if there the exist relations R : τ e X × τ e X L and S : τ e X × τ e X L by
R ( A , B ) = x X ( A ( x ) B ( f ( x ) ) ) , S ( B , A ) = y Y ( A ( f ( y ) ) B ( y ) )
with an isotone map f : X Y such that ( e τ e X , R , S , e τ e X ) is a residuated frame.
Let ( e X ) z ( x ) = e ( z , x ) for all z X . Then ( e X ) z τ e X . Now, we have
R ( ( e X ) a , ( e X ) b ) = x X ( e X ( a , x ) e X ( b , f ( x ) ) ) = 1 , R ( ( e X ) b , ( e X ) a ) = 1 , R ( ( e X ) a , ( e X ) a ) = R ( ( e X ) b , ( e X ) b ) = 0.6 , R ( ( e X ) c , ( e X ) c ) = 1 , R ( ( e X ) a , ( e X ) c ) = 0.7 , R ( ( e X ) c , ( e X ) a ) = 0.5 , R ( ( e X ) b , ( e X ) c ) = 0.7 , R ( ( e X ) c , ( e X ) b ) = 0.5 . S ( ( e X ) x , ( e X ) y ) = R ( ( e X ) y , ( e X ) x ) for   all x , y X .
Moreover,
R ( ( e X ) a , ( e X ) b 1 ) = x X ( e X ( a , x ) e X ( f ( x ) , b ) ) = e X ( f ( a ) , b ) .
Since f is isotone and R ( x , y ) = e X ( x , f ( y ) ) = e X ( f ( x ) , y ) , we have by Example 1(4) that ( e τ e X , F , G , e τ e Y ) is a residuated connection with
F ( A ) ( y ) = x X ( A ( x ) e X ( x , f ( y ) ) , G ( B ) ( x ) = y X ( e X ( x , f ( y ) ) B ( y ) ) .
Since f is isotone and R ( x , y ) = e X ( f ( y ) , x ) = e X ( y , f ( x ) ) , we have by Example 1(3) that ( e τ e X , F , G , e τ e Y ) is a dual residuated connection with
F ( A ) ( y ) = x X ( e X ( f ( y ) , x ) A ( x ) ) , G ( B ) ( x ) = y X ( B ( y ) e X ( f ( y ) , x ) ) .
Since ( e τ e X , R , S , e τ e X ) is a residuated frame, we have by Theorem 7 that ( e τ e τ e X , F , G , e τ e τ e X ) is a residuated connection where
F ( α ) ( B ) = A τ e X z X ( A ( z ) B ( f ( z ) ) ) α ( A ) , G ( α ) ( B )                       = C τ e X z X ( B ( f ( z ) ) C ( z ) ) α ( C ) .
Since
( A ( z ) B ( f ( z ) ) ) ( B ( f ( z ) ) A ( z ) ) α ( A ) α ( A ) ,
we have
( A ( z ) B ( f ( z ) ) ) α ( A ) ( B ( f ( z ) ) A ( z ) ) α ( A ) .
Hence F ( α ) ( B ) G ( α ) ( B ) .Since f is isotone, we have that f ( B ) τ e X for all B τ e X , and so
G ( α ) ( B ) ( B ( f ( z ) ) B ( f ( z ) ) ) α ( f ( B ) ) = ( B ( f ( z ) ) B ( f ( z ) ) ) α ( f ( B ) ) F ( α ) ( B ) .
Hence the map h : ( e X , f , f , e X ) ( e τ e τ e X , F , F , e τ e τ e X ) is an R-R embedding map.
(2) Let ( X = { a , b , c } , e X ) be a fuzzy poset where
e X = 1 0.6 0.5 0.6 1 0.7 0.7 0.5 1 .
Since
0.7 = e X ( c , a ) e X ( f ( c ) , f ( a ) ) = e X ( c , b ) = 0.5 ,
f is not an isotone map. Hence ( e X , f , f , e X ) are neither residuated nor dual residuated connections.Let R ( x , y ) = e X ( x , f ( y ) ) . Then ( e τ e X , F , G , e τ e Y ) is not a residuated connection with
F ( A ) ( y ) = x X ( A ( x ) e X ( x , f ( y ) ) , G ( B ) ( x ) = y X ( e X ( x , f ( y ) ) B ( y ) ) ,
because F ( ( e X ) c ) τ e X for ( e X ) c τ e X from F ( ( e X ) c ) ( c ) e X ( c , a ) = 0.7 F ( ( e X ) c ) ( a ) = 0.5 where
F ( ( e X ) c ) ( c ) = x X ( ( e X ) c ( x ) e X ( x , f ( c ) ) = e X ( c , c ) = 1 , F ( ( e X ) c ) ( a ) = x X ( ( e X ) c ( x ) e X ( x , f ( a ) ) = e X ( c , b ) = 0.5 .
Let R ( x , y ) = e X ( f ( y ) , x ) . Then ( e τ e X , F , G , e τ e Y ) is not a dual residuated connection with
F ( A ) ( y ) = y X ( e X ( f ( y ) , x ) A ( x ) ) , G ( B ) ( x ) = y X ( B ( y ) e X ( f ( y ) , x ) ) ,
because F ( ( e X 1 ) c ) τ e X for ( e X 1 ) c τ e X from F ( ( e X 1 ) c ) ( b ) e X ( b , c ) = 0.2 F ( ( e X 1 ) c ) ( c ) = 0 where
F ( ( e X 1 ) c ) ( b ) = y X ( e X ( f ( b ) , x ) ( e X 1 ) c ( x ) ) = e X ( f ( b ) , c ) = 0.5 , F ( ( e X 1 ) c ) ( c ) = y X ( e X ( f ( c ) , x ) ( e X 1 ) c ( x ) ) = e X ( f ( c ) , c ) = 0 .
(3) Let ( X = { a , b , c } , e X ) be a fuzzy poset where
e X = 1 1 0.7 0.6 1 0.7 0.7 0.7 1 .
Let g , h : X X be maps by
g ( a ) = g ( b ) = a , g ( c ) = c and h ( a ) = h ( b ) = b , h ( c ) = c .
Since
e X ( x , y ) e X ( g ( x ) , g ( y ) ) , e X ( x , y ) e X ( h ( x ) , h ( y ) ) , g ( h ( a ) ) = g ( h ( b ) ) = a , g ( h ( c ) ) = c , h ( g ( a ) ) = h ( g ( b ) ) = b , g ( h ( c ) ) = c ,
we have
e X ( g ( h ( x ) ) , x ) = e X ( x , h ( g ( x ) ) ) = 1 , e X ( h ( g ( a ) ) , a ) = e X ( b , g ( h ( b ) ) ) = 0.6 .
Hence ( e X , g , h , e X ) is a residuated connection, but not a dual residuated connection.Since ( e X , g , h , e X ) is a residuated connection, we have by Theorem 5 that ( e τ e X , R , S , e τ e X ) is a residuated frame where
R ( A , B ) = x X ( A ( x ) B ( g ( x ) ) ) , S ( B , A ) = y Y ( A ( h ( y ) ) B ( y ) ) .
Since ( e τ e X , R , S , e τ e X ) is a residuated frame, we have by Theorem 7 that ( e τ e τ e X , F , G , e τ e τ e X ) is a residuated connection where
F ( α ) ( B ) = A τ e X ( R ( A , B ) α ( A ) ) = A τ e X z X ( A ( z ) B ( g ( z ) ) ) α ( A ) ,
G ( α ) ( A ) = B τ e X ( S ( B , A ) α ( B ) ) = B τ e X z X ( A ( h ( z ) ) B ( z ) ) α ( B ) .

4. Fuzzy Dual Residuated Connections on Alexandrov L -Topologies

Theorem 9.
Let ( X , e X ) and ( Y , e Y ) be fuzzy posets. Let τ e X and τ e Y be Alexandrov L-topologies. Then the following hold:
(1) ( e X , f , g , e Y ) is a dual residuated connection. That is, e Y ( y , f ( x ) ) = e X ( g ( y ) , x ) for all x , y X if and only if there exist maps R : τ e X × τ e Y L and S : τ e Y × τ e X L by
R ( A , B ) = x X ( B ( f ( x ) ) A ( x ) ) , S ( B , A ) = y Y ( B ( y ) A ( g ( y ) ) )
with isotone maps f : X Y , g : Y X such that ( e τ e X , R , S , e τ e X ) is a dual residuated frame.
(2) In ( 1 ) ,
R ( A , B ) = e τ e X ( f ( B ) , A ) = e τ e Y ( B , F ( A ) ) = e τ e X ( G ( B ) , A )
where F ( A ) ( y ) = z X ( e Y ( y , f ( z ) ) A ( z ) ) and G ( B ) = y Y ( e Y ( y , f ( z ) ) B ( y ) ) .
S ( B , A ) = e τ e Y ( B , g ( A ) ) = e τ e Y ( B , F 1 ( A ) ) = e τ e X ( G 1 ( B ) , A )
where F 1 ( A ) ( w ) = z X ( e Y ( g ( w ) , z ) A ( z ) ) and G 1 ( B ) ( z ) = w Y ( e Y ( g ( w ) , z ) B ( w ) ) .
Proof. 
(1) ( ) Let A τ e X . Since A ( g ( f ( x ) ) ) e X ( g ( f ( x ) ) , x ) A ( x ) and B ( y ) e Y ( y , f ( g ( y ) ) ) B ( f ( g ( y ) ) ) and e X ( g ( f ( x ) ) , x ) ) = e Y ( y , f ( g ( y ) ) ) = by Theorem 2, we have
S ( B , A ) = y X ( B ( y ) A ( g ( y ) ) ) x X ( B ( f ( x ) ) A ( g ( f ( x ) ) ) e X ( g ( f ( x ) ) , x ) ) x X ( B ( f ( x ) ) A ( x ) ) = R ( A , B )
and
R ( A , B ) = x X ( B ( f ( x ) ) A ( x ) ) y X ( B ( f ( g ( y ) ) ) A ( g ( y ) ) ) y X ( B ( y ) e Y ( y , f ( g ( y ) ) ) A ( g ( y ) ) ) = S ( B , A ) .
Thus S = R 1 . For all A , A 1 τ e X and B , B 1 τ e Y , we have
e τ e X 1 ( A , A 1 ) R ( A 1 , B 1 ) e τ e Y 1 ( B 1 , B ) e τ e X ( A 1 , A ) x X ( B 1 ( f ( x ) ) A 1 ( x ) ) x X ( B ( f ( x ) ) B 1 ( f ( x ) ) ) x X ( B ( f ( x ) ) A ( x ) ) = R ( A , B ) .
( ) For all ( e X ) x 1 τ e X and ( e Y ) y τ e Y , we have
R ( ( e X ) x 1 , ( e Y ) y ) = z X ( ( e Y ) y ( f ( z ) ) ( e X ) x 1 ( z ) ) ( e Y ) y ( f ( x ) ) ( e X ) x 1 ( x ) = e Y ( y , f ( x ) ) .
Since
e Y ( y , f ( z ) ) e X ( z , x ) e Y ( y , f ( z ) ) e Y ( f ( z ) , f ( x ) ) e Y ( y , f ( x ) ) ,
we have e X ( x , z ) e Y ( y , f ( z ) ) e Y ( y , f ( x ) ) . Hence R ( ( e X ) x 1 , ( e Y ) y ) = e Y ( y , f ( x ) ) . Additionally,
S ( ( e Y ) y , ( e X ) x 1 ) = z X ( ( e Y ) y ( z ) ( e X ) x 1 ( g ( z ) ) ( e Y ) y ( y ) ( e Y ) x 1 ( g ( y ) ) = e X ( g ( y ) , x ) .
Since
e X ( g ( z ) , x ) e Y ( y , z ) e X ( g ( z ) , x ) e X ( g ( y ) , g ( z ) ) e X ( g ( y ) , x ) ,
we have e Y ( y , z ) e X ( g ( z ) , x ) e X ( g ( y ) , x ) . Hence S ( ( e Y ) y , ( e X ) x 1 ) = e X ( g ( y ) , x ) . Since
e Y ( y , f ( x ) ) = R ( ( e X ) x 1 , ( e Y ) y ) = S ( ( e Y ) y , ( e X ) x 1 ) = e X ( g ( y ) , x ) ,
we have that ( e X , f , g , e Y ) is a dual residuated connection. □
Example 4.
Let ( e L X , F , G , e L Y ) be a dual residuated connection for R L X × Y defined by
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y Y ( R ( x , y ) B ( y ) ) ,
and τ e L X = { α L L X | α ( A ) e L X ( A , B ) α ( B ) } and τ e L Y = { β L L Y | β ( A ) e L Y ( A , B ) β ( B ) } . Two maps T 1 , S 1 : τ e L X × τ e L Y L are defined by
T 1 ( α , β ) = A L X ( β ( F ( A ) ) α ( A ) ) , S 1 ( β , α ) = B L X ( β ( B ) α ( G ( B ) ) ) .
Then ( e τ e L X , T 1 , S 1 , e τ e L Y ) is a dual residuated frame.
Definition 8.
Let ( e X , f , g , e X ) and ( e Z , f ˜ , g ˜ , e Z ) be dual residuated connections. An injective function k : ( e X , f , g , e X ) ( e Z , f ˜ , g ˜ , e Z ) is a DR-DR embedding if
e X ( x , y ) = e Z ( k ( x ) , k ( y ) ) , e X ( y , f ( x ) ) = e Z ( k ( y ) , f ˜ ( k ( x ) ) ) , e X ( g ( y ) , x ) = e Z ( g ˜ ( k ( y ) ) , k ( x ) ) .
If k is a bijective DR-DR embedding map, then k is called a DR-DR isomorphism.
Theorem 10.
Let ( e X , f , g , e X ) be a dual residuated connection, τ e X be an Alexandrov L-topology and τ e τ e X = { α L τ e X | α ( A ) e τ e X ( A , B ) α ( B ) } . Define a map h : X τ e τ e X by h ( x ) ( A ) = x ^ ( A ) = A ( x ) . Then h : ( e X , f , g , e X ) ( e τ e τ e X , F , G , e τ e τ e X ) is a DR-DR embedding map with e X ( x , y ) = e τ e τ e X ( x ^ , y ^ ) , F ( h ( x ) ) ( B ) = F ( x ^ ) ( B ) = f ( x ) ^ ( B ) and G ( h ( y ) ) ( A ) = G ( y ^ ) ( A ) = g ( y ) ^ ( A ) for all A τ e X where
R ( A , B ) = x X ( B ( f ( x ) ) A ( x ) ) , S ( B , A ) = y X ( B ( y ) A ( g ( y ) ) ) , F ( α ) ( B ) = A τ e X ( R ( A , B ) α ( A ) ) , G ( α ) ( A ) = B τ e X ( S ( B , A ) α ( B ) ) .
Moreover, e τ e τ e X ( y ^ , F ( x ^ ) ) = e τ e τ e X ( G ( y ^ ) , x ^ ) .
Proof. 
By Theorem 9, ( e τ e X , R , S , e τ e X ) is a dual residuated frame where
R ( A , B ) = x X ( B ( f ( x ) ) A ( x ) ) , S ( B , A ) = y X ( B ( y ) A ( g ( y ) ) ) .
By Theorem 4(1), ( e τ e τ e X , F , G , e τ e τ e X ) is a dual residuated connection where
F ( α ) ( B ) = A τ e X ( R ( A , B ) α ( A ) ) = A τ e X z X ( B ( f ( z ) ) A ( z ) ) α ( A ) , G ( α ) ( A ) = B τ e X ( S ( B , A ) α ( B ) ) = B τ e X z X ( B ( z ) A ( g ( z ) ) ) α ( B ) .
By Theorem 6, a map h : X τ e τ e X by h ( x ) ( A ) = x ^ ( A ) = A ( x ) is embedding. That is, e X ( x , y ) = e τ e τ e X ( x ^ , y ^ ) . For all B τ e X , we have
F ( x ^ ) ( B ) = A τ e X ( R ( A , B ) x ^ ( A ) ) = A τ e X z X ( B ( f ( z ) ) A ( z ) ) A ( x ) A τ e X ( B ( f ( x ) ) A ( x ) ) A ( x ) B ( f ( x ) ) = f ( x ) ^ ( B ) .
Since f is isotone and B τ e X , we have
B ( f ( x ) ) e X ( x , y ) B ( f ( x ) ) e X ( f ( x ) , f ( y ) ) B ( f ( y ) ) .
Hence f ( B ) τ e X .
Let A = f ( B ) . For all A , B τ e X ,
F ( x ^ ) ( B ) = A τ e X z X ( B ( f ( z ) ) A ( z ) ) A ( x ) z X ( B ( f ( z ) ) B ( f ( z ) ) B ( f ( x ) ) ) = B ( f ( x ) ) = B ( f ( x ) ) = f ( x ) ^ ( B )
and
G ( y ^ ) ( A ) = B τ e X ( S ( B , A ) y ^ ( B ) ) = B τ e X z X ( B ( z ) A ( g ( z ) ) ) B ( y ) B τ e X B ( y ) A ( g ( y ) ) ) B ( y ) A ( g ( y ) ) = g ( y ) ^ ( A ) .
Let B ( y ) = g ( A ) ( y ) = A ( g ( y ) ) for all y X . Since
g ( A ) ( y ) e Y ( y , w ) A ( g ( y ) ) e X ( g ( y ) , g ( w ) ) A ( g ( w ) ) ,
we have g ( A ) τ e X . Moreover,
G ( y ^ ) ( B ) = A τ e X z X ( B ( z ) A ( g ( z ) ) ) B ( y ) z X ( A ( g ( z ) ) A ( g ( z ) ) ) A ( g ( y ) ) ) = A ( g ( y ) ) = A ( g ( y ) ) = g ( y ) ^ ( A ) .
Moreover,
e τ e τ e X ( y ^ , F ( x ^ ) ) = e τ e τ e X ( y ^ , f ( x ) ^ ) = e X ( y , f ( x ) ) = e X ( g ( y ) , x ) = e τ e τ e X ( g ( y ) ^ , x ^ ) = e τ e τ e X ( G ( y ^ ) , x ^ ) .
Definition 9.
Let ( e X , R , S , e X ) and ( e Z , R ˜ , S ˜ , e Z ) be dual residuated frames. An injective map k : ( e X , R , S , e X ) ( e Z , R ˜ , S ˜ , e Z ) is a DR-DR frame embedding if
e X ( x , y ) = e Z ( k ( x ) , k ( y ) ) , R ( x , y ) = R ˜ ( k ( x ) , k ( y ) ) , S ( x , y ) = S ˜ ( k ( x ) , k ( y ) ) .
If k is a bijective DR-DR frame embedding map, then k is called a DR-DR frame isomorphism.
Theorem 11.
Let ( e X , R , S , e X ) be a dual residual frame, τ e X be an Alexandrov L-topology and τ e τ e X = { α L τ e X | α ( A ) e τ e X ( A , B ) α ( B ) } . Define a map k : X τ e τ e X by k ( x ) ( A ) = x ^ ( A ) = A ( x ) . Then the map k : ( e X , R , S , e X ) ( e τ e τ e X , R ^ , S ^ , e τ e τ e X ) is a DR-DR frame embedding map with e X ( x , y ) = e τ e τ e X ( k ( x ) , k ( y ) ) , R ( x , y ) = R ^ ( x ^ , y ^ ) and S ( x , y ) = S ^ ( x ^ , y ^ ) where
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = x X ( S ( y , x ) B ( y ) ) , R ^ ( α , β ) = A τ e X ( β ( F ( A ) ) α ( A ) ) , S ^ ( β , α ) = B τ e X ( β ( B ) α ( G ( B ) ) ) .
Proof. 
By Theorem 4(1), ( τ e X , F , G , τ e X ) is a dual residuated connection where
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y Y ( R ( x , y ) B ( y ) ) .
By Theorem 9, ( e τ e τ e X , R ^ , S ^ , e τ e τ e X ) is a dual residuated frame where
R ^ ( α , β ) = A τ e X ( β ( F ( A ) ) α ( A ) ) , S ^ ( β , α ) = B τ e X ( β ( B ) α ( G ( B ) ) ) .
By Theorem 6, e X ( x , y ) = e τ e τ e X ( x ^ , y ^ ) . Moreover,
R ^ ( x ^ , y ^ ) = A τ e X ( y ^ ( F ( A ) ) x ^ ( A ) ) = A τ e X ( z X ( R ( z , y ) A ( z ) ) A ( x ) ) A τ e X ( ( R ( x , y ) A ( x ) ) A ( x ) ) R ( x , y ) .
Let R y 1 ( z ) = R ( z , y ) . Since e X 1 R e X 1 R e X 1 R , we have
R y 1 ( x ) e X ( x , z ) = e X 1 ( z , x ) R ( x , y ) R y 1 ( z ) .
Thus R y 1 τ e X , and so
R ^ ( x ^ , y ^ ) = A τ e X ( z X ( R ( z , y ) A ( z ) ) A ( x ) ) z X ( ( R ( z , y ) R y 1 ( z ) ) R y 1 ( x ) ) = R ( x , y ) ,
S ^ ( y ^ , x ^ ) = B τ e X ( y ^ ( B ) x ^ ( G ( B ) ) ) = B τ e X ( B ( y ) z X ( S ( z , x ) B ( z ) ) B τ e X ( B ( y ) ( S ( y , x ) B ( y ) ) S ( y , x ) .
For all R y 1 τ e X ,
S ^ ( y ^ , x ^ ) = B τ e X ( y ^ ( B ) x ^ ( G ( B ) ) ) ( R y 1 ( y ) z X ( R ( x , z ) R y 1 ( z ) ) R ( x , y ) = R ( x , y ) = S ( y , x ) .
Hence k : ( e X , R , S , e X ) ( e τ e τ e X , R ^ , S ^ , e τ e τ e X ) is a D R - D R frame embedding map. □
Example 5.
Let X = { a , b , c } be a set. Let f : X X a map and ( [ 0 , 1 ] , ) defined as in Example 3.
(1) Let ( X = { a , b , c } , e X ) be a fuzzy poset defined as in Example 3(1). Since ( e X , f , f , e X ) is a dual residuated connection, that is, e X ( f ( x ) , y ) = e X ( x , f ( y ) ) for all x , y X , there exist maps R : τ e X × τ e X L and S : τ e X × τ e X L by
R ( A , B ) = x X ( B ( f ( x ) ) A ( x ) ) , S ( B , A ) = y Y ( B ( y ) A ( g ( y ) ) )
with an isotone map f : X Y such that ( e τ e X , R , S , e τ e X ) is a dual residuated frame. For all ( e X ) a , ( e X ) b τ e X ,
R ( ( e X ) a , ( e X ) b ) = x X ( e X ( b , f ( x ) ) e X ( a , x ) ) = 1 , R ( ( e X ) b , ( e X ) a ) = 1 , R ( ( e X ) a , ( e X ) a ) = R ( ( e X ) b , ( e X ) b ) = 0.6 , R ( ( e X ) c , ( e X ) c ) = 1 , R ( ( e X ) a , ( e X ) c ) = 0.5 , R ( ( e X ) c , ( e X ) a ) = 0.7 , R ( ( e X ) b , ( e X ) c ) = 0.5 , R ( ( e X ) c , ( e X ) b ) = 0.7 , S ( ( e X ) x , ( e X ) y ) = R ( ( e X ) y , ( e X ) x ) for   all x , y X .
Moreover,
R ( ( e X ) a 1 , ( e X ) b ) = x X ( ( e X ) b ( f ( x ) ) e X ) a 1 ( x ) ) = e X ( b , f ( a ) ) .
By Theorem 4(1), ( e τ e τ e X , F , G , e τ e τ e X ) is a dual residuated connection where
F ( α ) ( B ) = A τ e X ( R ( A , B ) α ( A ) ) = A τ e X z X ( B ( f ( z ) ) A ( z ) ) α ( A ) , G ( α ) ( A ) = B τ e X ( S ( B , A ) α ( B ) ) = B τ e X z X ( B ( z ) A ( g ( z ) ) ) α ( B ) .
By a similar method used in Example 3, one can see that F = G .
(2) Let ( X = { a , b , c } , e X ) be a fuzzy poset and g , h : X X defined as in Example 3(3). Since ( e X , h , g , e X ) is a dual residuated connection, that is, e X ( h ( x ) , y ) = e X ( x , g ( y ) ) for all x , y X , there exist relations R : τ e X × τ e X L and S : τ e X × τ e X L by
R ( A , B ) = x X ( B ( h ( x ) ) A ( x ) ) , S ( B , A ) = y Y ( B ( y ) A ( g ( y ) ) )
such that ( e τ e X , R , S , e τ e X ) is a dual residuated frame. By Theorem 4(1), ( e τ e τ e X , F , G , e τ e τ e X ) is a dual residuated connection where
F ( α ) ( B ) = A τ e X ( R ( A , B ) α ( A ) ) = A τ e X z X ( B ( h ( z ) ) A ( z ) ) α ( A ) , G ( α ) ( A ) = B τ e X ( S ( B , A ) α ( B ) ) = B τ e X z X ( B ( z ) A ( g ( z ) ) ) α ( B ) .
Example 6.
(1) Let ( X = { a , b , c } , e X ) be a fuzzy poset where
e X = 1 0.6 0.5 0.6 1 0.7 0.5 0.7 1 .
Define a binary operation⊙ on [ 0 , 1 ] by
x y = max { 0 , x + y 1 } , x y = min { 1 x + y , 1 } .
Then ( L = [ 0 , 1 ] , , , 0 , 1 ) is a complete residuated lattice. Let
R = 0.7 0.4 0.3 0.6 0.8 0.5 0.3 0.5 0.8 .
Since ( e X , R , S , e X ) is a residuated frame, we have by Theorem 3(1) that ( e τ e X , F , G , e τ e X ) is a residuated connection where
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y X ( R ( x , y ) B ( y ) ) .
By Theorem 11, ( e τ e τ e X , R ^ , S ^ , e τ e τ e X ) is a residuated frame where
R ^ ( α , β ) = A τ e X ( α ( A ) β ( F ( A ) ) ) , S ^ ( β , α ) = B τ e X ( α ( G ( B ) ) β ( B ) ) .
Since ( e X , R , S , e X ) is a dual residuated frame, we have by Theorem 4(1) that ( τ e X , F , G , τ e X ) is a dual residuated connection where
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y Y ( R ( x , y ) B ( y ) ) .
By Theorem 11, ( e τ e τ e X , R ^ , S ^ , e τ e τ e X ) is a dual residuated connection where
R ^ ( α , β ) = A τ e X ( β ( F ( A ) ) α ( A ) ) , S ^ ( β , α ) = B τ e X ( β ( B ) α ( G ( B ) ) ) .
(2) Let
e X = 1 0.7 0.5 0.4 1 0.3 0.3 0.5 1 .
Then
e X R e X = 0.7 0.5 0.3 0.6 0.8 0.5 0.3 0.5 0.8 ,
and so R < e X R e X . Hence ( e X , R , S , e X ) is not residuated frame. Since G ( ( e X ) b 1 ) ( a ) e X ( a , b ) = R ( a , b ) e X ( a , b ) = 0.6 0.7 = 0.3 0.2 = R ( b , b ) = G ( ( e X ) b 1 ) ( b ) , we have G ( ( e X ) b 1 ) τ e X . However, since R = e X 1 R e X 1 , we have that ( e τ e X , F , G , e τ e X ) is a dual residuated connection defined by
F ( A ) ( y ) = x X ( R ( x , y ) A ( x ) ) , G ( B ) ( x ) = y Y ( R ( x , y ) B ( y ) ) .
By Theorem 11, ( e τ e τ e X , R ^ , S ^ , e τ e τ e X ) is a dual residuated frame where
R ^ ( α , β ) = A τ e X ( β ( F ( A ) ) α ( A ) ) , S ^ ( β , α ) = B τ e X ( β ( B ) α ( G ( B ) ) ) .

5. Conclusions

As an extension of residuated frames for classical relational semantics, we have introduced (dual) residuated frames for fuzzy logics. As a generalization of the classical Tarski’s fixed point theorem, we have shown that an Alexandrov L-topology is a fuzzy complete lattice with residuated connections. By using residuated connections, we have constructed fuzzy rough sets and have solved fuzzy relation equations on the Alexandrov L-topology. Moreover, as a generalization of the Dedekind–MacNeille completion, we have introduced R-R (resp. D R - D R ) embedding maps and R-R (resp. D R - D R ) frame embedding maps.
In the future, by using the concepts of (dual) residuated connections and frames, we plan to investigate fuzzy contexts, information systems and decision rules on Alexandrov L-topologies.

Author Contributions

All authors have contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Gangneung-Wonju National University.

Acknowledgments

The author would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which lead to a number of improvements of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Blyth, T.S.; Janovitz, M.F. Residuation Theory; Pergamon Press: New York, NY, USA, 1972. [Google Scholar]
  2. Bělohlávek, R. Fuzzy Relational Systems; Kluwer Academic Publishers: New York, NY, USA, 2002. [Google Scholar]
  3. Galatos, N.; Jipsen, P. Residuated frames with applications to decidability. Trans. Am. Math. Soc. 2013, 365, 1219–1249. [Google Scholar] [CrossRef] [Green Version]
  4. Galatos, N.; Jipsen, P. Distributive residuated frames and generalized bunched implication algebras. Algebra Universalis 2017, 78, 303–336. [Google Scholar] [CrossRef]
  5. Orłowska, E.; Rewitzky, I. Context algebras, context frames and their discrete duality. In Transactions on Rough Sets IX; Springer: Berlin, Germany, 2008; pp. 212–229. [Google Scholar]
  6. Orłowska, E.; Rewitzky, I. Algebras for Galois-style connections and their discrete duality. Fuzzy Sets Syst. 2010, 161, 1325–1342. [Google Scholar] [CrossRef]
  7. Chrysafis, P.H.; Orłowska, E. Representation of lattices with modal operators in two-sorted frames. Fund. Inform. 2019, 166, 29–56. [Google Scholar]
  8. Pawlak, Z. Rough sets. Internat. J. Comput. Inform. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
  9. Pawlak, Z. Rough sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. [Google Scholar]
  10. Ward, M.; Dilworth, R.P. Residuated lattices. Trans. Amer. Math. Soc. 1939, 45, 335–354. [Google Scholar] [CrossRef]
  11. Hájek, P. Metamathematices of Fuzzy Logic; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
  12. Höhle, U.; Klement, E.P. Non-Classical Logic and Their Applications to Fuzzy Subsets; Kluwer Academic Publishers: Boston, MA, USA, 1995. [Google Scholar]
  13. Höhle, U.; Rodabaugh, S.E. Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory; The Handbooks of Fuzzy Sets Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
  14. Jipsen, P.; Tsinakis, C. A Survey of Residuated Lattices. In Ordered Algebraic Structures; Springer: Boston, MA, USA, 2002; pp. 15–56. [Google Scholar]
  15. Rodabaugh, S.E.; Klement, E.P. Topological and Algebraic Structures in Fuzzy Sets. In The Handbook of Recent Developments in the Mathematics of Fuzzy Sets; Kluwer Academic Publishers: Boston, MA, USA; Dordrecht, The Netherlands; London, UK, 2003. [Google Scholar]
  16. Turunen, E. Mathematics Behind Fuzzy Logic; Physica-Verlag: Heidelberg, Germany, 1999. [Google Scholar]
  17. Kim, Y.C. Join-meet preserving maps and fuzzy preorders. J. Intell. Fuzzy Syst. 2015, 28, 1089–1097. [Google Scholar] [CrossRef]
  18. Kim, Y.C. Categories of fuzzy preorders, approximation operators and Alexandrov topologies. J. Intell. Fuzzy Syst. 2016, 31, 1787–1793. [Google Scholar] [CrossRef]
  19. Ko, J.M.; Kim, Y.C. Bi-closure systems and bi-closure operators on generalized residuated lattices. J. Intell. Fuzzy Syst. 2019, 36, 2631–2643. [Google Scholar]
  20. Ko, J.M.; Kim, Y.C. Fuzzy complete lattices, Alexandrov L-topologies and fuzzy rough sets. J. Intell. Fuzzy Syst. 2020. [Google Scholar] [CrossRef]
  21. Lai, H.; Zhang, D. Fuzzy preorder and fuzzy topology. Fuzzy Sets Syst. 2006, 157, 1865–1885. [Google Scholar] [CrossRef]
  22. Ma, Z.M.; Hu, B.Q. Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets. Inf. Sci. 2013, 218, 194–204. [Google Scholar] [CrossRef]
  23. Radzikowska, A.M.; Kerre, E.E. A comparative study of fuzy rough sets. Fuzzy Sets Syst. 2002, 126, 137–155. [Google Scholar] [CrossRef]
  24. Radzikowska, A.M.; Kerre, E.E. Characterisation of main classes of fuzzy relations using fuzzy modal operators. Fuzzy Sets Syst. 2005, 152, 223–247. [Google Scholar] [CrossRef]
  25. Tiwari, S.P.; Srivastava, A.K. Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzzy Sets Syst. 2013, 210, 63–68. [Google Scholar] [CrossRef]
  26. She, Y.H.; Wang, G.J. An axiomatic approach of fuzzy rough sets based on residuated lattices. Comput. Math. Appl. 2009, 58, 189–201. [Google Scholar] [CrossRef] [Green Version]
  27. Perfilieva, I. Finitary solvability conditions for systems of fuzzy relation equations. Inf. Sci. 2013, 234, 29–43. [Google Scholar] [CrossRef]
  28. Perfilieva, I.; Noskova, N. System of fuzzy relation equations with inf- composition: Commplete set of solutions. Fuzzy Sets Syst. 2008, 159, 2256–2271. [Google Scholar] [CrossRef]
  29. Perfilieva, I.; Dubois, D.; Prade, H.; Esteva, F.; Godo, L.; Hodáková, P. Interpolation of fuzzy data, analytical approach and overview. Fuzzy Sets Syst. 2012, 192, 134–158. [Google Scholar] [CrossRef]
  30. Tiwari, S.P.; Perfilieva, I.; Singh, A.P. Generalized residuated lattices based F-transformation. Iran. J. Fuzzy Syst. 2018, 15, 165–182. [Google Scholar]
  31. Sussner, P. Lattice fuzzy transforms from the perspective of mathematical morphology. Fuzzy Sets Syst. 2016, 288, 115–128. [Google Scholar] [CrossRef]
  32. Zhang, H.P.; Perez-Fernandez, R.; Baets, B.D. Fuzzy betweenness relations and their connection with fuzzy order relations. Fuzzy Sets Syst. 2020, 384, 1–12. [Google Scholar] [CrossRef] [Green Version]
  33. Sun, F.; Qu, X.; Wang, X.; Zhu, L. On pre-solution matrices of fuzzy relation equations over complete Brouwerian lattices. Fuzzy Sets Syst. 2020, 384, 34–53. [Google Scholar] [CrossRef]
  34. Oh, J.M.; Kim, Y.C. Fuzzy transformations and fuzzy residuated connections. J. Intell. Fuzzy Syst. 2019, 36, 3555–3566. [Google Scholar] [CrossRef]
  35. Xie, W.X.; Zhang, Q.Y.; Fan, L. Fuzzy complete lattices. Fuzzy Sets Syst. 2009, 160, 2275–2291. [Google Scholar]
  36. Zhang, Q.Y.; Fan, L. Continuity in quantitive domains. Fuzzy Sets Syst. 2005, 154, 118–131. [Google Scholar] [CrossRef]
  37. Zhang, Q.Y.; Xie, W.X.; Fan, L. The Dedekind-MacNeille completion for fuzzy posets. Fuzzy Sets Syst. 2009, 160, 2292–2316. [Google Scholar]
  38. Xia, C.; Zhao, B. A categorical characterization of the least Q-quantale completion of Q-ordered semigroups. Fuzzy Sets Syst. 2020, 382, 129–141. [Google Scholar] [CrossRef]
  39. Ciro, R. An extension of Stone duality to fuzzy topologies and MV-algebras. Fuzzy Sets Syst. 2016, 303, 80–96. [Google Scholar]
  40. Zhou, H.; Shi, H. Stone duality for R0-algebras with internal states. Iran. J. Fuzzy Syst. 2017, 14, 139–161. [Google Scholar]
  41. Wei, Y.; Han, S.E. A Stone-type duality for sT0-stratified Alexandrov L-topological spaces. Fuzzy Sets Syst. 2016, 282, 1–20. [Google Scholar]
  42. Včelař, F.; Pátíková, Z. A comparative study of Tarski’s fixed point theorems with the stress on commutative sets of L-fuzzy isotone maps with respect to transitivities. Fuzzy Sets Syst. 2020, 382, 29–56. [Google Scholar] [CrossRef]
  43. Tarski, A. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 1955, 382, 285–309. [Google Scholar] [CrossRef] [Green Version]

Share and Cite

MDPI and ACS Style

Kim, Y.C.; Oh, J.-M. The Relations between Residuated Frames and Residuated Connections. Mathematics 2020, 8, 295. https://doi.org/10.3390/math8020295

AMA Style

Kim YC, Oh J-M. The Relations between Residuated Frames and Residuated Connections. Mathematics. 2020; 8(2):295. https://doi.org/10.3390/math8020295

Chicago/Turabian Style

Kim, Yong Chan, and Ju-Mok Oh. 2020. "The Relations between Residuated Frames and Residuated Connections" Mathematics 8, no. 2: 295. https://doi.org/10.3390/math8020295

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop