Abstract
The M-eigenvalue of elasticity M-tensors play important roles in nonlinear elastic material analysis. In this paper, we establish an upper bound and two sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors without irreducible conditions, which improve some existing results. Numerical examples are proposed to verify the efficiency of the obtained results.
MSC:
15A18; 15A42
1. Introduction
Tensor eigenvalue problems play an important role in numerical multilinear algebra [1,2,3,4,5,6,7], and they have a wide range in medical resonance [8], imaging spectral hypergraph theory [9], automatical control [10,11,12,13]. Particularly, the eigenvalue problem of the fourth-order elastic modulus tensor was dealt with by Love for the isotropic tensor [14] and for the anisotropic tensor [15,16,17,18,19,20,21]. A fourth-order real tensor is called a partially symmetric tensor, denoted by if
A fourth-order partially symmetric tensor is useful in nonlinear elastic material analysis [3,16,17,18,19,20,21,22,23,24,25,26,27]. Ostrosablin [16] first constructed a complete system of eigentensors for the fourth rank tensor of elastic modulus, and Nikabadze [18] generalized these results and constructed a full system of eigentensors for a tensor of any even rank, as well as a complete system of eigentensor-columns for a tensor-block matrix of any even rank [22,23]. For example, a fourth-order partially symmetric tensor with or called the elasticity tensor, can be used in the two/three-dimensional field equations for a homogeneous compressible nonlinearly elastic material for static problems without body forces [27]. To identify the strong ellipticity in elastic mechanics, Han et al. [25] introduced M-eigenvalues of a fourth-order partially symmetric tensor. For , if
where , , then the scalar is called an M-eigenvalue of the tensor , and x and y are called left and right M-eigenvectors of associated with the M-eigenvalue. Then the M-spectral radius of is denoted by
Recently, tensors with special structures, such as nonnegative tensors, M-tensors and H-tensors, are becoming the focus in recent research [2,24,28,29,30,31]. Some effective algorithms for finding eigenvalue and the corresponding eigenvector have been implemented [1,24,32,33,34,35]. For example, Bozorgmanesh et al. [32] propose an algorithm that can solve E-eigenvalue problem faster. However, it is very difficult for these algorithms to compute all M-eigenvalues or E-eigenvalues. Thus, some researchers turned to investigating eigenvalue inclusion sets [4,7,36,37,38,39,40,41]. Particularly, some bounds for the minimum H-eigenvalue of nonsingular M-tensors have been proposed [2,28,30,42,43]. Ding et al. [24] introduced a structured partially symmetric tensor named elasticity M-tensors and established important properties of elasticity M-tensors and nonsingular elasticity M-tensors.
Definition 1.
is called an elasticity M-tensor if there exist a nonnegative tensor and a real number such that
where is the M-spectral radius and is called elasticity identity tensor with its entries
Furthermore, if then we call a nonsingular elasticity M-tensor.
Based on structural properties of elasticity M-tensors, He et al. [26] proposed some bounds for the minimum M-eigenvalue under irreducible conditions. However, some of information eigenvectors x on elasticity M-tensors is not fully mined, such as Meanwhile, irreducibility is a relatively strict condition for elasticity M-tensor. Inspired by these observations, we want to present sharp bounds for the minimum M-eigenvalue of elasticity M-tensors by describing eigenvectors precisely without irreducible conditions, which improve existing results in [26].
2. Preliminaries
In this section, we firstly introduce some definitions and important properties of elasticity M-tensors [24,26,27].
Definition 2.
Let be a square tensor, then is called reducible if there exists a nonempty proper index subset such that If is not reducible, then is irreducible.
Lemma 1
(Theorem 1 of [27]). M-eigenvalues always exist. If x and y are left and right M-eigenvectors of , associated with an M-eigenvalue λ, then then
Lemma 2
(Lemma 2.3 of [26]). Let be an irreducible elasticity tensor and be the minimal M-eigenvalues of , then
Lemma 3
(Lemma 2.3 of [26]). Let be an irreducible and elasticity M-tensors and be the minimal M-eigenvalue of . Then is an M-eigenvalue of with positive eigenvectors.
Lemma 4
(Theorem 4.1 of [24]). The M-spectral radius of any nonnegative tensor in is exactly its greatest M-eigenvalue. Furthermore, there is a pair of nonnegative M-eigenvectors corresponding to the M-spectral radius.
In the following, we characterize M-eigenvectors of elasticity M-tensors without irreducibility conditions.
Lemma 5.
Let be a elasticity M-tensor and be the minimal M-eigenvalue. Then, there is a nonnegative M-eigenvector corresponding to .
Proof.
Since is a elasticity M-tensor, there exist a nonnegative tensor and a real number such that
where is the greatest M-eigenvalue of with nonnegative eigenvectors by Theorem 4.1 in [24]. Setting we have It follows from Proposition 2.2 in [24] that and have the same eigenvectors. It follows from Lemma 4 that there exists a nonnegative M-eigenvector corresponding to . Thus, the conclusion follows. ☐
3. Bounds for the Minimum -Eigenvalue of Elasticity -Tensors
In this section, we establish sharp bounds for We begin our work by collecting the information of
Lemma 6.
For any if
then
Further, for all
Proof.
Define
where denotes Lagrange multiplier. For all , deriving the above equation and respectively, we get
Hence, we obtain Particularly, set
with So,
Further,
☐
Remark 1.
For the right M-eigenvector we can establish similar conclusions that for all
Without irreducible conditions, we propose a sharp upper bound for the minimum M-eigenvalue of elasticity M-tensors.
Theorem 1.
Let be a elasticity M-tensor. Then,
where
Proof.
Let be the minimum M-eigenvalue of . It follows Lemma 1 that
From Lemma 2 and (4), it holds that
☐
Next, we propose sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors.
Theorem 2.
Let be a elasticity M-tensor. Then
where
Proof.
Let be the minimum M-eigenvalue of By Lemma 5, there exist nonnegative left and right M-eigenvectors corresponding to On one hand, setting by , one has Recalling the p-th equation of we obtain
Setting by (5) and Lemma 6, one has
On the other hand, setting from the t-th equation of we obtain
Letting by (8) and Lemma 6, we have
Now, we are at a position to prove that the bound in Theorem 2 is tighter than that of Theorem 3.1 of [26].
Corollary 1.
Let be a elasticity M-tensor. Then
Proof.
On one hand, it follows from Theorem 3.1 of [26] that
Since and , we can verify
which shows
On the other hand, it follows from Theorem 3.1 of [26] that
Following the similar arguments in the proof of (11), we obtain
Choosing as a component of x with the second largest modulus, we obtain another sharp lower bound for
Theorem 3.
Let be a elasticity M-tensor. Then
where
Proof.
Let be the minimal M-eigenvalue of By Lemma 5, there exist nonnegative left and right M-eigenvectors corresponding to On one hand, set By the p-th equation of one has
From the q-th equation of and we yield
which implies
Then, solving for we have
where
When and one has
On the other hand, set From the t-th equation of it follows that
Letting by (19) and Lemma 6, we obtain
Using (20), we yield
Recalling s-th equation of and we have
which implies
Then, solving for we obtain
where
When and then we have
Thus, the desired result holds. ☐
In the following, we use Example 3.1 of [26] to show the superiority of our results.
Example 1.
Let be an elasticity M-tensor, whose entries are
The bounds via different estimations given in the literature are shown in Table 1:
Table 1.
Bound estimations of the minimum M-eigenvalue with different methods
By computations, we obtain that the minimum M-eigenvalue and corresponding with left and right M-eigenvectors are It is easy to see that the results given in Theorems 3.1–3.3 are sharper than some existing results [26]. It is noted that Theorems 2 and 3 have their own advantages. Theorem 3 can estimate the lower bound of the minimum M-eigenvalue more accurately, but the calculation of Theorem 2 is simpler.
Ding et al. [24] pointed out that a tensor is M-positive if and only if its smallest M-eigenvalue is positive. In the following, the results given in Theorems 2 and 3 can exactly check the positiveness of the elasticity M-tensor .
Example 2.
Consider the elasticity M-tensor defined by
The bounds via different estimations given in the literature are shown in Table 2.
Table 2.
Bound estimations of the minimum M-eigenvalue and testing the M-positive definiteness
By computations, we obtain that the minimum M-eigenvalue and corresponding with left and right M-eigenvectors are From Theorems 2 and 3, we obtain , which shows that is M-positive definite. However, the existing results of [26] cannot identify the M-positiveness of
For the medium-sized tensors, we show the validity of the estimations by our theorems.
Example 3.
All testing elasticity M-tensors are generated as follows: and other elements are generated randomly in by MATLAB R2014a, where n denotes variable dimension. For different dimensions elasticity M-tensors, the values presented in the table are the average values of 10 examples. The bounds via different estimations given in the literature are shown in Table 3.
Table 3.
Comparison estimations of the minimum M-eigenvalue with random elasticity M-tensors
4. Conclusions
In this paper, we exactly characterized the information of eigenvectors without irreducible conditions. Further, we proposed a new upper bound and two sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors by establishing new eigenvalue inequality. Numerical examples were proposed to verify the efficiency of the obtained results.
Author Contributions
Writing—original draft, Y.Z.; software, L.S.; writing—review and editing, G.W. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by the Natural Science Foundation of China (No. 11671228).
Acknowledgments
We are grateful to the anonymous reviewers whose comments and suggestions have contributed to improving the quality of research that is described in this paper.
Conflicts of Interest
The authors declare no conflicts of interest.
References
- Chang, K.; Qi, L.; Zhou, G. Singular values of a real rectangular tensor. J. Math. Anal. Appl. 2010, 370, 284–294. [Google Scholar] [CrossRef]
- Ding, W.; Qi, L.; Wei, Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl. 2013, 439, 3264–3278. [Google Scholar] [CrossRef]
- Huang, Z.; Qi, L. Positive definiteness of paired symmetric tensors and elasticity tensors. J. Comput. Appl. Math. 2018, 388, 22–43. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Kong, X. New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 2014, 21, 39–50. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Z. Tensor Analysis: Spectral Theory and Special Tensors; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Yang, Y.; Yang, Q. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM. J. Matrix Anal. Appl. 2011, 32, 1236–1250. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, G.; Caccetta, L. Z-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst. Ser. B 2017, 22, 187–198. [Google Scholar] [CrossRef]
- Bloy, L.; Verma, R. On Computing the Underlying Fiber Directions From the Diffusion Orientation Distribution Function in Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–8. [Google Scholar]
- Li, G.; Qi, L.; Yu, G. The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 2013, 20, 1001–1029. [Google Scholar] [CrossRef]
- Gao, L.; Luo, F.; Yan, Z. Finite-time annular domain stability of impulsive switched systems: Mode-dependent parameter approach. Int. J. Control 2019, 92, 1381–1392. [Google Scholar] [CrossRef]
- Gao, L.; Cao, Z.; Wang, G. Almost sure stability of discrete-time nonlinear Markovian jump delayed systems with impulsive signals. Nonlinear Anal-Hybri. 2019, 34, 248–263. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, M.; Yao, X. Stochastic input-to-state stability for impulsive switched stochastic nonlinear systems with multiple jumps. Int. J. Syst. Sci. 2019, 50, 1860–1871. [Google Scholar] [CrossRef]
- Ni, Q.; Qi, L.; Wang, F. An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE. Trans. Automat. Contr. 2008, 53, 1096–1107. [Google Scholar] [CrossRef]
- Love, A. A Treatise on the Mathematical Theory of Elasticity; Cambridge University Press: Cambridge, UK, 1927. [Google Scholar]
- Annin, B.D.; Ostrosablin, N.I. Anisotropy of elastic properties of materials. J. Appl. Mech. Tech. Phys. 2008, 49, 998–1014. [Google Scholar] [CrossRef]
- Ostrosablin, N.I. On the structure of the elastic tensor and the classification of anisotropic materials. J. Appl. Mech. Tech. Phys. 1986, 27, 600–607. [Google Scholar] [CrossRef]
- Ostrosablin, N.I. Functional relation between two symmetric seconde-rank tensors. J. Appl. Mech. Tech. Phys. 2007, 48, 734–736. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Eigenvalue problem for tensors of even rank and its applications in mechanics. J. Math. Sci. 2017, 221, 174–204. [Google Scholar] [CrossRef]
- Rykhlevskii, Y. On Hooke’s law. Prikl. Mat. Mekh. 1984, 48, 420–435. [Google Scholar]
- Vekua, I.N. Fundamentals of Tensor Analysis and Theory of Covariants; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Zubov, L.; Rudev, A. On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials. Z. Angew. Math. Mech. 2016, 96, 1096–1102. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Topics on tensor calculus with applications to mechanics. J. Math. Sci. 2017, 225, 1–194. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Eigenvalue Problems of a Tensor and a Tensor-Block Matrix (TBM) of Any Even Rank with Some Applications. Generalized Continua as Models for Classical and Advanced Materials; Springer: Cham, Switzerland, 2016; pp. 279–317. [Google Scholar]
- Ding, W.; Liu, J.; Qi, L.; Yan, H. Elasticity M-tensors and the strong ellipticity condition. arXiv 2017, arXiv:1705.09911v2. [Google Scholar] [CrossRef]
- Han, D.; Dai, H.; Qi, Q. Conditions for strong ellipticity of anisotropic elastic materials. J. Elasticity 2009, 97, 1–13. [Google Scholar] [CrossRef]
- He, J.; Xu, G.; Liu, Y. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. J. Ind. Manag. Optim. 2019, 13, 1. [Google Scholar] [CrossRef]
- Qi, L.; Dai, H.; Han, D. Conditions for strong ellipticity and M-eigenvalues. Front. Math. China 2009, 4, 349–364. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Liu, L. Bound estimations on the eigenvalues for Fan Product of M-tensors. Taiwan. J. Math. 2019, 23, 751–766. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Sun, H. Criteria for strong H-tensors. Front. Math. China 2016, 11, 577–592. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, L.; Zhou, G. M-tensors and some applications. SIAM. J. Matrix Anal. Appl. 2014, 32, 437–452. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C. Singular value inclusion sets for rectangular tensors. Linear Multilinear Algebra 2018, 66, 1333–1350. [Google Scholar] [CrossRef]
- Bozorgmanesh, H.; Hajarian, M. Solving tensor E-eigenvalue problem faster. Appl. Math. Lett. 2020, 100, 106020. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, L.; Zhang, X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer. Linear Algebra Appl. 2009, 16, 589–601. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Wang, Y. Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors. Linear Multilinear Algebra 2019. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, G.; Qi, L.; Alqahtani, A. A fast algorithm for the spectral radii of weakly reducible nonnegative tensors. Numer. Linear Algebra Appl. 2018, 25, e2134. [Google Scholar] [CrossRef]
- He, J.; Liu, Y.; Xu, G. New sufficient condition for the positive definiteness of fourth order tensors. Mathematics 2018, 6, 303. [Google Scholar] [CrossRef]
- Li, C.; Li, Y. An eigenvalue localization set for tensors with applications to determine the positive (semi-) deffiniteness of tensors. Linear Multilinear Algebr. 2016, 64, 587–601. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, G.; Caccetta, L. Sharp Brauer-type eigenvalue inclusion theorems for tensors. Pac. J. Optim. 2018, 14, 227–244. [Google Scholar]
- Wang, G.; Wang, Y.; Zhang, Y. Brauer-type upper bounds for Z-spectral radius of weakly symmetric nonnegative tensors. J. Math. Inequal. 2019, 13, 1105–1116. [Google Scholar] [CrossRef]
- Wang, G.; Sun, L.; Liu, L. M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors. Complexity 2020, 2020, 2474278. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Wang, G. Exclusion sets in the S-type eigenvalue localization sets for tensors. Open Math. 2019, 17, 1136–1146. [Google Scholar] [CrossRef]
- Cui, J.; Peng, G.; Lu, Q.; Huang, Z. Several new estimates of the minimum H-eigenvalue for nonsingular M-tensors. Bull. Malays. Math. Sci. Soc. 2019, 42, 1213–1236. [Google Scholar] [CrossRef]
- Zhao, J.; Sang, C. New bounds for the minimum eigenvalue of M-tensors. Open Math. 2017, 2017, 296–303. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).