Next Article in Journal
Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature
Previous Article in Journal
Energetic-Property-Preserving Numerical Schemes for Coupled Natural Systems
Open AccessArticle

Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors

by Ying Zhang 1, Linxuan Sun 2 and Gang Wang 2,*
1
School of Basic Teaching, Shandong Water Conservancy Vocational College, Rizhao 276800, China
2
School of Management Science, Qufu Normal University, Rizhao 276800, China
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(2), 250; https://doi.org/10.3390/math8020250
Received: 28 November 2019 / Revised: 9 February 2020 / Accepted: 10 February 2020 / Published: 14 February 2020
(This article belongs to the Section Mathematics and Computer Science)
The M-eigenvalue of elasticity M-tensors play important roles in nonlinear elastic material analysis. In this paper, we establish an upper bound and two sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors without irreducible conditions, which improve some existing results. Numerical examples are proposed to verify the efficiency of the obtained results. View Full-Text
Keywords: elasticity M-tensors; minimum M-eigenvalue; upper and lower bounds elasticity M-tensors; minimum M-eigenvalue; upper and lower bounds
MDPI and ACS Style

Zhang, Y.; Sun, L.; Wang, G. Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors. Mathematics 2020, 8, 250.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop