Generalized Tepper’s Identity and Its Application
Abstract
:1. Introduction
2. Generalized Tepper’S Identity
3. New Identities Related to the Bernoulli and Euler Polynomials
4. Taylor Series for the Generalized Tepper Identity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tepper, M. A factorial conjecture. Math. Mag. 1965, 38, 303–304. [Google Scholar] [CrossRef]
- Long, C.T. Proof of Tepper’s factorial conjecture. Math. Mag. 1965, 38, 304–305. [Google Scholar] [CrossRef]
- Papp, F.J. Another proof of Tepper’s identity. Math. Mag. 1972, 45, 119–121. [Google Scholar] [CrossRef]
- Gould, H.W. Euler’s formula for n-th differences of powers. Am. Math. Mon. 1978, 85, 450–467. [Google Scholar]
- Egorychev, G.P. Integral Representation and the Computation of Combinatorial Sums; American Mathematical Society: Providence, RI, USA, 1984. [Google Scholar]
- Bayat, M.; Teimoori, H. Pascal k-eliminated functional matrix and its property. Linear Algebra Appl. 2000, 308, 65–75. [Google Scholar] [CrossRef]
- Bayat, M.; Teimoori, H. Minimal polynomial of Pascal matrices over the field Zp. Discret. Math. 2001, 232, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Bayat, M.; Teimoori, H. The linear algebra of the generalized Pascal functional matrix. Linear Algebra Appl. 1999, 295, 81–89. [Google Scholar] [CrossRef]
- Zhaot, X.; Wang, T. The algebraic properties of the generalized Pascal functional matrices associated with the exponential families. Linear Algebra Appl. 2000, 318, 45–52. [Google Scholar]
- Chen, G.; Chen, L. Some identities involving the Fubini polynomials and Euler polynomials. Mathematics 2018, 6, 300. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhang, W. Some identities involving Fibonacci polynomials and Fibonacci numbers. Mathematics 2018, 6, 334. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Chen, L. Some types of identities involving the Legendre polynomials. Mathematics 2019, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Dolgy, D.V.; Kim, D.S.; Kwon, J.; Kim, T. Some identities of ordinary and degenerate Bernoulli numbers and polynomials. Symmetry 2019, 11, 847. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Some identities of degenerate Bell polynomials. Mathematics 2020, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Arponen, T. Matrix approach to polynomials 2. Linear Algebra Appl. 2005, 394, 257–276. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Micek, C. Generalized Pascal functional matrix and its applications. Linear Algebra Appl. 2007, 423, 230–245. [Google Scholar] [CrossRef] [Green Version]
- Gould, H.W. Combinatorial Identities: A standardized Set of Tables Listing 500 Binomial Coefficient Summations; Morgantown Printing: Morgantown, WV, USA, 1972. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Comtet, L. Advanced Combinatorics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Boyadzhiev, K.N. Close encounters with the Stirling numbers of the second kind. Math. Mag. 2012, 85, 252–266. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. New families of special numbers for computing negative order euler numbers and related numbers and polynomials. Appl. Anal. Discret. Math. 2018, 12, 1–35. [Google Scholar] [CrossRef]
- Simsek, Y. Generating functions for finite sums involving higher powers of binomial coefficients: Analysis of hypergeometric functions including new families of polynomials and numbers. J. Math. Anal. Appl. 2019, 477, 1328–1352. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y. The statistic “number of udu’s” in Dyck paths. Discret. Math. 2004, 287, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y. Numerical triangles and several classical sequences. Fibonacci Quart. 2005, 43, 359–370. [Google Scholar]
- Yang, S.-L. Some identities involving the binomial sequences. Discret. Math. 2008, 308, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Construction method for generating functions of special numbers and polynomials arising from analysis of new operators. Math. Methods Appl. Sci. 2018, 41, 6934–6954. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press: New York, NY, USA, 1984. [Google Scholar]
- Roman, S. The Umbral Calculus; Academic Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Gessel, I.M. Applications of the classical umbral calculus. Algebra Universalis 2003, 49, 397–434. [Google Scholar] [CrossRef] [Green Version]
- Dilcher, K. Bernoulli and Euler polynomials. In NIST Handbook of Mathematical Functions; U.S. Dept. Commerce: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010; pp. 587–599. [Google Scholar]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Ordinary and degenerate Euler numbers and polynomials. J. Inequal. Appl. 2019, 2019, 265. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Guo, B.-N. Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials. Mediterr. J. Math. 2017, 14, 140. [Google Scholar] [CrossRef]
- Todorov, P.G. On the theory of the Bernoulli polynomials and numbers. J. Math. Anal. Appl. 1984, 104, 309–350. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-H.; Ha, C.-W. A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials. J. Math. Anal. Appl. 2006, 315, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. The generalized Zeta function zeta(s,x), Bernoulli polynomials Bn(x), Euler polynomials En(x), and polylogarithms Linu(x). In Integrals and Series, Vol. 3: More Special Functions; Gordon and Breach Science Publishers: New York, NY, USA, 1990; pp. 23–24. [Google Scholar]
- Srivastava, H.M.; Todorov, P.G. An explicit formula for the generalized Bernoulli polynomials. J. Math. Anal. Appl. 1988, 130, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T.; Lee, S.-H. Umbral calculus and the Frobenius–Euler polynomials. Abstr. Appl. Anal. 2013, 2013, 871512. [Google Scholar] [CrossRef] [Green Version]
- Kurt, B.; Simsek, Y. On the generalized Apostol-type Frobenius–Euler polynomials. Adv. Differ. Equ. 2013, 2013, 1. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013, 87, 343–1355. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T.; Lee, S.-H.; Rim, S.-H. Frobenius–Euler polynomials and umbral calculus in the p-adic case. Adv. Differ. Equ. 2012, 2012, 222. [Google Scholar] [CrossRef] [Green Version]
- Kruchinin, D.V.; Kruchinin, V.V. A method for obtaining generating function for central coefficients of triangles. J. Integer Seq. 2012, 15, 12.9.3. [Google Scholar]
- Kruchinin, D.V.; Kruchinin, V.V. Application of a composition of generating functions for obtaining explicit formulas of polynomials. J. Math. Anal. Appl. 2013, 404, 161–171. [Google Scholar] [CrossRef]
- Kruchinin, D.V.; Kruchinin, V.V. Explicit formulas for reciprocal generating function and its application. Adv. Stud. Contemp. Math. 2019, 29, 365–372. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruchinin, D.; Kruchinin, V.; Simsek, Y. Generalized Tepper’s Identity and Its Application. Mathematics 2020, 8, 243. https://doi.org/10.3390/math8020243
Kruchinin D, Kruchinin V, Simsek Y. Generalized Tepper’s Identity and Its Application. Mathematics. 2020; 8(2):243. https://doi.org/10.3390/math8020243
Chicago/Turabian StyleKruchinin, Dmitry, Vladimir Kruchinin, and Yilmaz Simsek. 2020. "Generalized Tepper’s Identity and Its Application" Mathematics 8, no. 2: 243. https://doi.org/10.3390/math8020243
APA StyleKruchinin, D., Kruchinin, V., & Simsek, Y. (2020). Generalized Tepper’s Identity and Its Application. Mathematics, 8(2), 243. https://doi.org/10.3390/math8020243