The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued F-Contractions
Abstract
:1. Introduction and Preliminaries
- ()
- F is strictly increasing;
- ()
- for all, sequence , if and only if
- ()
- there exist such that and
- ()
- for all with .
2. Fixed Point Results
- 1.
- is modified-F-contraction for ;
- 2.
- is lower semi-continuous mapping; and
- 3.
- and satisfy
- ;
- ; and
- .
3. Notations and Setting of the Problem
4. Existence of Solution to Nonlinear Matrix Equations
- (1)
- there exists a positive number N for which ; and
- (2)
- for all ,
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2003, 132, 1435–1443. [Google Scholar] [CrossRef]
- Duan, X.; Liao, A.; Tang, B. On the nonlinear matrix equation . Linear Algebra Appl. 2008, 429, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y. Solving the nonlinear matrix equation . via a contraction principle. Linear Algebra Appl. 2009, 430, 1380–1383. [Google Scholar] [CrossRef] [Green Version]
- Berzig, M. Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem. Appl. Math. Lett. 2012, 25, 1638–1643. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, S. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. J. Math. Anal. Appl. 2006, 317, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Altun, I.; Minak, G.; Dağ, H. Multivalued F-contractions on complete metric space. J. Nonlinear Convex Anal. 2015, 16, 659–666. [Google Scholar]
- Minak, G.; Olgun, M.; Altun, I. A new approach to fixed point theorems for multi-valued contractive maps. Carpathian J. Math. 2015, 31, 241–248. [Google Scholar]
- Nguyen, V.L.; Phuong, L.T.; Hong, N.T.; Qin, X. Some fixed point theorems for multi-valued mappings concerning F-contractions. J. Fixed Point Theory Appl. 2018, 20, 139. [Google Scholar] [CrossRef]
- Nashine, H.K.; Kadelburg, Z. Wardowski-Feng-Liu type fixed point theorems for multi-valued mappings. Fixed Point Theory. accepted.
- Agarwal, R.P.; Hussain, N.; Taoudi, M.A. Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations. Abstr. Appl. Anal. 2012, 3, 15. [Google Scholar] [CrossRef]
- Ahmad, J.; Hussain, N.; Khan, A.R.; Azam, A. Fixed point results for generalized multi-valued contractions. J. Nonlinear Sci. Appl. 2015, 8, 909–918. [Google Scholar] [CrossRef]
- Asl, H.J.; Rezapour, S.; Shahzad, N. On fixed points of α-ψ- contractive multifunctions. Fixed Point Theory Appl. 2012, 2012, 212. [Google Scholar] [CrossRef] [Green Version]
- Ćirić, L.B. Fixed point for generalized multi-valued contractions. Mater. Vesn. 1972, 9, 265–272. [Google Scholar]
- Ćirić, L.B. Multi-valued nonlinear contraction mappings. Nonlinear Anal. Theory Methods Appl. 2009, 71, 2716–2723. [Google Scholar] [CrossRef]
- Ding, H.S.; Kadelburg, Z.; Nashine, H.K. Common fixed point theorems for weakly increasing mappings on ordered orbitally complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 85. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Ahmad, J.; Azam, A. Generalized fixed point theorems for multi-valued α-ψ-contractive mappings. J. Inequal. Appl. 2014, 2014, 348. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Kutbi, M.A.; Salimi, P. Fixed point theory in α-complete metric spaces with applications. Abstr. Appl. Anal. 2014. Available online: https://www.researchgate.net/publication/270671639_Fixed_Point_Theory_in_-Complete_Metric_Spaces_with_Applications (accessed on 5 January 2020).
- Hussain, N.; Mitrovic, Z.D. On multi-valued weak quasi-contractions in b-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 3815–3823. [Google Scholar] [CrossRef]
- Imdad, M.; Gubran, R.; Arif, M.; Gopal, D. An observation on α-type F-contractions and some ordered-theoretic fixed point results. Math. Sci. 2017, 11, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, I.; Hussain, N. Fixed point theorems for generalized multi-valued nonlinear F-contractions. J. Nonlinear Sci. Appl. 2016, 9, 5870–5893. [Google Scholar] [CrossRef]
- Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 2007, 334, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Mizoguchi, N.; Takahashi, W. Fixed point theorems for multi-valued mappings on complete metric spaces. J. Math. Anal. Appl. 1989, 141, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Nashine, H.K.; Kadelburg, Z.; Golubovic, Z. Common fixed point results using generalized altering distances on orbitally complete ordered metric spaces. J. Appl. Math. 2012, 2012, 12. [Google Scholar] [CrossRef]
- Olgun, M.; Minak, G.; Altun, I. A new approach to Mizoguchi-Takahshi type fixed point theorems. J. Nonlinear Convex Anal. 2016, 17, 579–587. [Google Scholar]
- Popescu, O. Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces. Fixed Point Theory Appl. 2014, 2014, 12. [Google Scholar] [CrossRef]
- Salimi, P.; Latif, A.; Hussain, N. Modified α-ψ-contractive mappings with applications. Fixed Point Theory Appl. 2013, 2013, 151. [Google Scholar] [CrossRef] [Green Version]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorem for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Türkoğlu, D.; Özer, O.; Fisher, B. Fixed point theorems for T-orbitally complete spaces. Mathematica 1999, 9, 211–218. [Google Scholar]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Wardowski, D.; Dung, V.N. Fixed points of F-weak contractions on complete metric space. Demonstratio Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
- Altun, I.; Minak, G.; Olgun, M. Fixed points of multi-valued nonlinear F-contractions on complete metric spaces. Nonlinear Anal. Model. Control 2016, 21, 201–210. [Google Scholar] [CrossRef]
- Ćirić, L.B. Fixed point theorems for multi-valued contractions in complete metric spaces. J. Math. Anal. Appl. 2008, 348, 499–507. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, N.; Ali, G.; Iqbal, I.; Samet, B. The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued F-Contractions. Mathematics 2020, 8, 212. https://doi.org/10.3390/math8020212
Hussain N, Ali G, Iqbal I, Samet B. The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued F-Contractions. Mathematics. 2020; 8(2):212. https://doi.org/10.3390/math8020212
Chicago/Turabian StyleHussain, Nawab, Ghada Ali, Iram Iqbal, and Bessem Samet. 2020. "The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued F-Contractions" Mathematics 8, no. 2: 212. https://doi.org/10.3390/math8020212
APA StyleHussain, N., Ali, G., Iqbal, I., & Samet, B. (2020). The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued F-Contractions. Mathematics, 8(2), 212. https://doi.org/10.3390/math8020212