The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data
Abstract
:1. Introduction
- The IPLE model includes the inverse Weibull, inverse logistic exponential, inverse Rayleigh, and inverse exponential distributions as special sub-models.
- The IPLE distribution can provide symmetrical, right-skewed, left-skewed, reversed-J-shaped, and J-shaped densities and increasing, unimodal, decreasing, reversed-J-shaped, and J-shaped hazard rates.
- The probability density function (PDF), as well as the cumulative distribution function (CDF) of the IPLE model have simple closed forms, and hence, it can be adopted in analyzing censored data.
- The IPLE model has been used to model a heavy-tailed insurance dataset from actuarial science, and it provides adequate fits compared to other competing distributions.
2. The IPLE Distribution
3. Mathematical Properties
3.1. Quantile Function
3.2. Moments
3.3. Inequality Curves
3.4. Moments of Residual Life
4. Methods of Estimation
4.1. Maximum Likelihood Estimators
4.2. Anderson–Darling Estimation
4.3. Cramér–von Mises Estimators
4.4. Least-Squares and Weighted Least-Squares Estimators
5. Simulation Study
6. Applications
7. Conclusions
Funding
Conflicts of Interest
References
- Gupta, R.D.; Kundu, D. Generalized exponential distribution: Different method of estimations. J. Stat. Comput. Simul. 2001, 69, 315–337. [Google Scholar] [CrossRef]
- Jones, M.C. Families of distributions arising from distributions of order statistics. Test 2004, 13, 1–43. [Google Scholar] [CrossRef]
- Barreto-Souza, W.; Santos, A.H.; Cordeiro, G.M. The beta generalized exponential distribution. J. Stat. Comput. Simul. 2010, 80, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; King, R.; Hudson, I.L. Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data. Commun. Stat. Simul. Comput. 2017, 46, 4377–4398. [Google Scholar] [CrossRef]
- Pinho, L.G.B.; Cordeiro, G.M.; Nobre, J.S. The Harris extended exponential distribution. Commun. Stat. Theory Methods 2015, 44, 3486–3502. [Google Scholar] [CrossRef]
- Afify, A.Z.; Cordeiro, G.M.; Yousof, H.M.; Alzaatreh, A.; Nofal, Z.M. The Kumaraswamy transmuted-G family of distributions: Properties and applications. J. Data Sci. 2016, 14, 245–270. [Google Scholar]
- Lemonte, A.J.; Cordeiro, G.M.; Moreno-Arenas, G. A new useful three-parameter extension of the exponential distribution. Statistics 2016, 50, 312–337. [Google Scholar] [CrossRef]
- Rasekhi, M.; Alizadeh, M.; Altun, E.; Hamedani, G.G.; Afify, A.Z.; Ahmad, M. The modified exponential distribution with applications. Pak. J. Stat. 2017, 33, 383–398. [Google Scholar]
- Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution. Commun. Stat. Theory Methods 2017, 46, 6543–6557. [Google Scholar] [CrossRef]
- Nassar, M.; Afify, A.Z.; Shakhatreh, M. Estimation methods of alpha power exponential distribution with applications to engineering and medical data. Pak. J. Stat. Oper. Res. 2020, 16, 149–166. [Google Scholar] [CrossRef]
- Afify, A.Z.; Zayed, M.; Ahsanullah, M. The extended exponential distribution and its applications. J. Stat. Theory Appl. 2018, 17, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Mansoor, M.; Tahir, M.H.; Cordeiro, G.M.; Provost, S.B.; Alzaatreh, A. The Marshall–Olkin logistic-exponential distribution. Commun. Stat. Theory Methods 2019, 48, 220–234. [Google Scholar] [CrossRef]
- Afify, A.Z.; Suzuki, A.K.; Zhang, C.; Nassar, M. On three-parameter exponential distribution: Properties, bayesian and non-bayesian estimation based on complete and censored samples. Commun. Stat. Simul. Comput. 2019. [Google Scholar] [CrossRef]
- Nassar, M.; Kumar, D.; Dey, S.; Cordeiro, G.M.; Afify, A.Z. The Marshall–Olkin alpha power family of distributions with applications. J. Comput. Appl. Math. 2019, 351, 41–53. [Google Scholar] [CrossRef]
- Afify, A.Z.; Mohamed, O.A. A new three-parameter exponential distribution with variable shapes for the hazard rate: Estimation and applications. Mathematics 2020, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Aldahlan, M.A.; Afify, A.Z. A new three-parameter exponential distribution with applications in reliability and engineering. J. Nonlinear Sci. Appl. 2020, 13, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Al-Babtain, A.A.; Shakhatreh, M.K.; Nassar, M.; Afify, A.Z. A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications. Mathematics 2020, 8, 1345. [Google Scholar] [CrossRef]
- Abbas, S.; Jahngeer, A.; Shahbaz, S.; Afify, A.Z.; Shahbaz, M. Topp-Leone moment exponential distribution: Properties and applications. J. Natl. Sci. Found. Sri Lanka 2020, 48. Available online: https://jnsfsl.sljol.info/articles/abstract/8836/ (accessed on 7 October 2020).
- Afify, A.Z.; Gemeay, A.M.; Ibrahim, N.A. The heavy-tailed exponential distribution: Risk measures, estimation, and application to actuarial data. Mathematics 2020, 8, 1276. [Google Scholar] [CrossRef]
- Alizadeh, M.; Afify, A.Z.; Eliwa, M.S.; Ali, S. The odd log-logistic Lindley-G family of distributions: Properties, Bayesian and non-Bayesian estimation with applications. Comput. Stat. 2020, 35, 281–308. [Google Scholar] [CrossRef]
- Lan, Y.; Leemis, L.M. The logistic-exponential survival distribution. Nav. Res. Logist. 2008, 55, 252–264. [Google Scholar] [CrossRef]
- Alkarni, S.H. Extended inverse lindley distribution: Properties and application. Springer-Plus 2015, 4, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mead, M. Generalized inverse gamma distribution and its applications in reliability. Commun. Stat. Theory Method 2015, 44, 1426–1435. [Google Scholar] [CrossRef]
- Sharma, V.K.; Singh, S.K.; Singh, U.S.; Agiwal, V. The inverse lindley distribution: A stress-strength reliability model with application to head and neck cancer data. J. Ind. Prod. Eng. 2015, 32, 162–173. [Google Scholar] [CrossRef]
- Barco, K.V.P.; Mazucheli, J.; Janeiro, V. The inverse power lindley distribution. Commun. Stat. Simul. Comput. 2017, 46, 6308–6323. [Google Scholar] [CrossRef]
- Nassar, M.; Afify, A.Z.; Dey, S.; Kumar, D. A new extension of weibull distribution: Properties and different methods of estimation. J. Comput. Appl. Math. 2018, 336, 439–457. [Google Scholar] [CrossRef]
- Afify, A.Z.; Nassar, M.; Cordeiro, G.M.; Kumar, D. The Weibull Marshall–Olkin Lindley distribution: Properties and estimation. J. Taibah Univ. Sci. 2020, 14, 192–204. [Google Scholar] [CrossRef]
- Sen, S.; Afify, A.Z.; Al-Mofleh, H.; Ahsanullah, M. The quasi xgamma-geometric distribution with application in medicine. Filomat 2019, 33, 5291–5330. [Google Scholar] [CrossRef] [Green Version]
- Nassar, M.; Afify, A.Z.; Shakhatreh, M.; Dey, S. On a new extension of Weibull distribution: Properties, estimation, and applications to one and two causes of failures. Qual. Reliab. Eng. Int. 2020, 36, 2019–2043. [Google Scholar] [CrossRef]
- Al-Mofleh, H.; Afify, A.Z.; Ibrahim, N.A. A new extended two-parameter distribution: Properties, estimation methods, and applications in medicine and geology. Mathematics 2020, 8, 1578. [Google Scholar] [CrossRef]
- Nadarajah, S.; Kotz, S. The beta exponential distribution. Reliab. Eng. Syst. Saf. 2006, 91, 689–697. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Tian, Y.; Tian, M.; Zhu, Q. Transmuted linear exponential distribution: A new generalization of the linear exponential distribution. Commun. Stat. Simul. Comput. 2014, 43, 2661–2677. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In International Symposium on Information Theory, 2nd ed.; Armenian SSR: Tsahkadsor, Armenian, 1973; pp. 267–281. [Google Scholar]
- Sugiura, N. Further analysts of the data by Akaike’s information criterion and the finite corrections: Further analysts of the data by Akaike’s. Commun. Stat. Theory Methods 1978, 7, 13–26. [Google Scholar] [CrossRef]
- Hannan, E.J.; Quinn, B.G. The determination of the order of an autoregression. J. R. Stat. Soc. Ser. B 1979, 41, 190–195. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Afify, A.Z.; Cordeiro, G.M.; Yousof, H.; Saboor, A.; Ortega, E.M.M. The Marshall–Olkin additive Weibull distribution with variable shapes for the hazard rate. Hacettepe J. Math. Stat 2018, 47, 365–381. [Google Scholar] [CrossRef]
Method | n | AVEs | Bias | MSEs | MREs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLEs | 20 | 0.29959 | 0.88811 | 0.50733 | 0.13269 | 0.26169 | 0.30401 | 1.80809 | 0.12442 | 0.15792 | 0.53074 | 0.34892 | 0.60802 |
50 | 0.25991 | 0.79873 | 0.50798 | 0.05854 | 0.13806 | 0.19014 | 0.00783 | 0.03766 | 0.06174 | 0.23414 | 0.18409 | 0.38027 | |
100 | 0.25895 | 0.77429 | 0.50633 | 0.04156 | 0.08943 | 0.12938 | 0.00609 | 0.01801 | 0.03136 | 0.16625 | 0.11924 | 0.25877 | |
200 | 0.25873 | 0.75914 | 0.51297 | 0.03051 | 0.05831 | 0.08815 | 0.00459 | 0.01000 | 0.01983 | 0.12204 | 0.07775 | 0.17631 | |
500 | 0.25725 | 0.75171 | 0.50998 | 0.02027 | 0.03069 | 0.05142 | 0.00376 | 0.00413 | 0.01196 | 0.08110 | 0.04093 | 0.10285 | |
ADEs | 20 | 1.26579 | 0.79586 | 0.57588 | 1.08235 | 0.28551 | 0.34821 | 116.65009 | 0.13636 | 0.19635 | 4.32941 | 0.38068 | 0.69643 |
50 | 0.27595 | 0.76685 | 0.54284 | 0.07209 | 0.17236 | 0.24400 | 0.01854 | 0.04866 | 0.09423 | 0.28836 | 0.22981 | 0.48799 | |
100 | 0.26022 | 0.76086 | 0.51886 | 0.04580 | 0.11980 | 0.17337 | 0.00380 | 0.02315 | 0.04820 | 0.18320 | 0.15973 | 0.34674 | |
200 | 0.25536 | 0.75225 | 0.51502 | 0.03015 | 0.08217 | 0.12481 | 0.00159 | 0.01091 | 0.02536 | 0.12058 | 0.10956 | 0.24962 | |
500 | 0.25218 | 0.74980 | 0.50695 | 0.01832 | 0.04998 | 0.07614 | 0.00057 | 0.00415 | 0.00959 | 0.07329 | 0.06664 | 0.15229 | |
CVMEs | 20 | 1.78919 | 0.85649 | 0.55473 | 1.61846 | 0.37561 | 0.35747 | 151.11781 | 0.25508 | 0.21699 | 6.47385 | 0.50082 | 0.71494 |
50 | 0.30719 | 0.79458 | 0.53295 | 0.11283 | 0.22474 | 0.26263 | 1.77022 | 0.08639 | 0.10349 | 0.45134 | 0.29965 | 0.52526 | |
100 | 0.26469 | 0.76813 | 0.52365 | 0.05615 | 0.15042 | 0.19391 | 0.00587 | 0.03701 | 0.05812 | 0.22461 | 0.20056 | 0.38783 | |
200 | 0.25608 | 0.76069 | 0.51137 | 0.03669 | 0.10336 | 0.13915 | 0.00230 | 0.01761 | 0.03072 | 0.14677 | 0.13782 | 0.27829 | |
500 | 0.25250 | 0.75338 | 0.50575 | 0.02278 | 0.06464 | 0.08860 | 0.00084 | 0.00671 | 0.01238 | 0.09114 | 0.08618 | 0.17720 | |
LSEs | 20 | 1.35563 | 0.81818 | 0.57272 | 1.18807 | 0.35716 | 0.36193 | 122.09909 | 0.22213 | 0.21403 | 4.75226 | 0.47621 | 0.72386 |
50 | 0.29041 | 0.77859 | 0.54445 | 0.09799 | 0.21584 | 0.26076 | 0.58039 | 0.07977 | 0.10480 | 0.39198 | 0.28779 | 0.52152 | |
100 | 0.26299 | 0.76297 | 0.52593 | 0.05524 | 0.14971 | 0.19431 | 0.00564 | 0.03658 | 0.05866 | 0.22095 | 0.19962 | 0.38863 | |
200 | 0.25413 | 0.75937 | 0.51083 | 0.03643 | 0.10359 | 0.13843 | 0.00221 | 0.01712 | 0.02968 | 0.14570 | 0.13812 | 0.27686 | |
500 | 0.25195 | 0.75325 | 0.50489 | 0.02293 | 0.06517 | 0.08886 | 0.00084 | 0.00669 | 0.01242 | 0.09172 | 0.08689 | 0.17771 | |
WLSEs | 20 | 1.01014 | 0.77884 | 0.58895 | 0.83437 | 0.30811 | 0.34971 | 71.84218 | 0.16052 | 0.19307 | 3.33749 | 0.41082 | 0.69943 |
50 | 0.26952 | 0.77672 | 0.54040 | 0.07246 | 0.18758 | 0.25074 | 0.01117 | 0.05932 | 0.09816 | 0.28983 | 0.25010 | 0.50149 | |
100 | 0.25804 | 0.76201 | 0.52441 | 0.04725 | 0.12609 | 0.18030 | 0.00383 | 0.02634 | 0.05161 | 0.18898 | 0.16812 | 0.36061 | |
200 | 0.25450 | 0.75544 | 0.51125 | 0.03160 | 0.08658 | 0.12822 | 0.00164 | 0.01218 | 0.02601 | 0.12641 | 0.11544 | 0.25644 | |
500 | 0.25151 | 0.75334 | 0.50269 | 0.01945 | 0.05377 | 0.08022 | 0.00060 | 0.00460 | 0.01027 | 0.07779 | 0.07169 | 0.16044 |
Method | n | AVEs | Bias | MSEs | MREs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLEs | 20 | 1.98692 | 1.65613 | 1.05014 | 0.40172 | 0.32998 | 0.13721 | 0.18342 | 0.13625 | 0.03212 | 0.20086 | 0.21999 | 0.13721 |
50 | 1.96919 | 1.62393 | 1.03293 | 0.39783 | 0.30905 | 0.09710 | 0.18012 | 0.12099 | 0.01568 | 0.19892 | 0.20604 | 0.09710 | |
100 | 1.96333 | 1.60204 | 1.02699 | 0.38290 | 0.28849 | 0.07974 | 0.16996 | 0.10569 | 0.01019 | 0.19145 | 0.19233 | 0.07974 | |
200 | 1.98399 | 1.57231 | 1.01797 | 0.34806 | 0.25748 | 0.06396 | 0.14809 | 0.08706 | 0.00634 | 0.17403 | 0.17165 | 0.06396 | |
500 | 2.00053 | 1.54050 | 1.00999 | 0.28207 | 0.20466 | 0.04962 | 0.10730 | 0.05913 | 0.00369 | 0.14103 | 0.13644 | 0.04962 | |
ADEs | 20 | 2.05895 | 1.53835 | 1.02221 | 0.41636 | 0.30581 | 0.12429 | 0.19326 | 0.12045 | 0.02598 | 0.20818 | 0.20388 | 0.12429 |
50 | 2.03424 | 1.55152 | 1.01309 | 0.41798 | 0.29525 | 0.08847 | 0.19257 | 0.11049 | 0.01295 | 0.20899 | 0.19683 | 0.08847 | |
100 | 2.03559 | 1.54074 | 1.01178 | 0.39759 | 0.28508 | 0.07501 | 0.18036 | 0.10188 | 0.00887 | 0.19879 | 0.19005 | 0.07501 | |
100 | 2.02842 | 1.53773 | 1.01109 | 0.37028 | 0.26689 | 0.06550 | 0.16258 | 0.09023 | 0.00638 | 0.18514 | 0.17792 | 0.06550 | |
200 | 2.03281 | 1.52109 | 1.00526 | 0.31318 | 0.22445 | 0.05283 | 0.12747 | 0.06767 | 0.00406 | 0.15659 | 0.14963 | 0.05283 | |
CVMEs | 20 | 1.87826 | 1.72135 | 1.07690 | 0.38363 | 0.33235 | 0.07690 | 0.17189 | 0.13969 | 0.02028 | 0.19181 | 0.22156 | 0.07690 |
50 | 1.85124 | 1.70679 | 1.05444 | 0.35344 | 0.30482 | 0.05444 | 0.15031 | 0.12129 | 0.01005 | 0.17672 | 0.20321 | 0.05444 | |
100 | 1.82886 | 1.69365 | 1.04599 | 0.32938 | 0.27898 | 0.04599 | 0.13554 | 0.10594 | 0.00672 | 0.16469 | 0.18599 | 0.04599 | |
200 | 1.83366 | 1.67706 | 1.04134 | 0.28956 | 0.24702 | 0.04134 | 0.11196 | 0.08856 | 0.00509 | 0.14478 | 0.16468 | 0.04134 | |
500 | 1.84133 | 1.65510 | 1.03588 | 0.23572 | 0.20102 | 0.03588 | 0.08330 | 0.06709 | 0.00362 | 0.11786 | 0.13402 | 0.03588 | |
LSEs | 10 | 2.00523 | 1.46603 | 1.00127 | 0.09759 | 0.24010 | 0.11181 | 0.00968 | 0.08205 | 0.02051 | 0.04880 | 0.16006 | 0.11181 |
50 | 2.00391 | 1.49271 | 1.00076 | 0.09740 | 0.16174 | 0.07225 | 0.00965 | 0.04083 | 0.00846 | 0.04870 | 0.10783 | 0.07225 | |
100 | 2.00088 | 1.49953 | 1.00131 | 0.09702 | 0.12334 | 0.05038 | 0.00960 | 0.02360 | 0.00405 | 0.04851 | 0.08222 | 0.05038 | |
200 | 1.99873 | 1.50270 | 1.00131 | 0.09654 | 0.09461 | 0.03641 | 0.00954 | 0.01399 | 0.00212 | 0.04827 | 0.06307 | 0.03641 | |
500 | 2.00174 | 1.50034 | 0.99943 | 0.09424 | 0.07327 | 0.02476 | 0.00923 | 0.00804 | 0.00097 | 0.04712 | 0.04885 | 0.02476 | |
WLSEs | 20 | 2.06749 | 1.49826 | 1.00850 | 0.41887 | 0.30856 | 0.12001 | 0.19513 | 0.12231 | 0.02408 | 0.20943 | 0.20571 | 0.12001 |
50 | 2.04871 | 1.52778 | 1.01135 | 0.41703 | 0.29708 | 0.08941 | 0.19303 | 0.11136 | 0.01299 | 0.20851 | 0.19805 | 0.08941 | |
100 | 2.04046 | 1.53485 | 1.01107 | 0.40579 | 0.28887 | 0.07680 | 0.18504 | 0.10366 | 0.00938 | 0.20289 | 0.19258 | 0.07680 | |
200 | 2.03033 | 1.53654 | 1.01142 | 0.37599 | 0.27231 | 0.06618 | 0.16631 | 0.09317 | 0.00650 | 0.18800 | 0.18154 | 0.06618 | |
500 | 2.02224 | 1.52710 | 1.00653 | 0.31262 | 0.22640 | 0.05315 | 0.12676 | 0.06940 | 0.00410 | 0.15631 | 0.15094 | 0.05315 |
Method | n | AVEs | Bias | MSEs | MREs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLEs | 20 | 5.00407 | 1.33856 | 1.69462 | 4.58584 | 0.58300 | 0.61194 | 915.57192 | 0.82702 | 1.79847 | 6.11446 | 0.58300 | 0.40796 |
50 | 0.80009 | 1.10950 | 1.56565 | 0.25042 | 0.26100 | 0.28367 | 2.77923 | 0.12885 | 0.17539 | 0.33390 | 0.26100 | 0.18911 | |
100 | 0.75820 | 1.04701 | 1.52647 | 0.14670 | 0.16658 | 0.18688 | 0.03663 | 0.04629 | 0.05870 | 0.19561 | 0.16658 | 0.12459 | |
200 | 0.75105 | 1.02483 | 1.51570 | 0.09973 | 0.11192 | 0.12771 | 0.01602 | 0.02034 | 0.02670 | 0.13298 | 0.11192 | 0.08514 | |
500 | 0.75042 | 1.01062 | 1.50764 | 0.06399 | 0.07115 | 0.07960 | 0.00655 | 0.00813 | 0.01008 | 0.08532 | 0.07115 | 0.05307 | |
ADEs | 20 | 9.38732 | 1.06719 | 1.57006 | 8.88929 | 0.50246 | 0.56440 | 1880.45673 | 0.47327 | 1.06650 | 11.85239 | 0.50246 | 0.37627 |
50 | 1.47665 | 1.00523 | 1.49807 | 0.89390 | 0.27826 | 0.29899 | 61.89330 | 0.12985 | 0.15880 | 1.19187 | 0.27826 | 0.19933 | |
100 | 0.82120 | 1.00558 | 1.49631 | 0.20048 | 0.18789 | 0.19384 | 0.71525 | 0.05817 | 0.06173 | 0.26731 | 0.18789 | 0.12922 | |
200 | 0.77776 | 1.00022 | 1.49962 | 0.12315 | 0.13102 | 0.13796 | 0.02781 | 0.02756 | 0.03125 | 0.16420 | 0.13102 | 0.09198 | |
500 | 0.76053 | 0.99923 | 1.49858 | 0.07278 | 0.08147 | 0.08400 | 0.00888 | 0.01041 | 0.01126 | 0.09704 | 0.08147 | 0.05600 | |
CVMEs | 20 | 17.17150 | 1.20607 | 1.94422 | 16.72239 | 0.71332 | 0.99773 | 3834.81526 | 1.07678 | 20.16972 | 22.29651 | 0.71332 | 0.66515 |
50 | 3.15400 | 1.03508 | 1.53326 | 2.60571 | 0.38905 | 0.39081 | 273.18805 | 0.26011 | 0.31904 | 3.47427 | 0.38905 | 0.26054 | |
100 | 0.98389 | 1.01821 | 1.50993 | 0.39120 | 0.26162 | 0.25295 | 7.71210 | 0.11351 | 0.11368 | 0.52160 | 0.26162 | 0.16863 | |
200 | 0.79328 | 1.00765 | 1.50508 | 0.15907 | 0.17208 | 0.16963 | 0.05690 | 0.04793 | 0.04686 | 0.21209 | 0.17208 | 0.11309 | |
500 | 0.76726 | 1.00035 | 1.50054 | 0.09351 | 0.10738 | 0.10484 | 0.01522 | 0.01817 | 0.01748 | 0.12467 | 0.10738 | 0.06989 | |
LSEs | 20 | 15.51388 | 1.11072 | 1.75752 | 15.06375 | 0.66087 | 0.84020 | 2945.08220 | 0.87576 | 5.92644 | 20.08500 | 0.66087 | 0.56013 |
50 | 2.90779 | 1.00897 | 1.50329 | 2.36165 | 0.37711 | 0.37609 | 220.69516 | 0.24414 | 0.31469 | 3.14887 | 0.37711 | 0.25073 | |
100 | 0.95680 | 0.99714 | 1.49358 | 0.35849 | 0.25029 | 0.24414 | 5.02891 | 0.10431 | 0.10430 | 0.47799 | 0.25029 | 0.16276 | |
200 | 0.78921 | 1.00561 | 1.50073 | 0.15660 | 0.17016 | 0.16939 | 0.05349 | 0.04723 | 0.04736 | 0.20881 | 0.17016 | 0.11293 | |
500 | 0.76231 | 1.00428 | 1.50377 | 0.09246 | 0.10792 | 0.10395 | 0.01419 | 0.01836 | 0.01722 | 0.12328 | 0.10792 | 0.06930 | |
WLSEs | 20 | 10.83923 | 1.05075 | 1.61118 | 10.35417 | 0.56427 | 0.66276 | 1971.92149 | 0.63157 | 4.08047 | 13.80556 | 0.56427 | 0.44184 |
50 | 1.40103 | 1.01544 | 1.50136 | 0.83711 | 0.31227 | 0.32132 | 67.46259 | 0.16992 | 0.20701 | 1.11615 | 0.31227 | 0.21421 | |
100 | 0.81149 | 1.00615 | 1.50063 | 0.19688 | 0.20227 | 0.20938 | 0.09490 | 0.06721 | 0.07468 | 0.26250 | 0.20227 | 0.13959 | |
200 | 0.77457 | 1.00254 | 1.50089 | 0.12427 | 0.13633 | 0.13784 | 0.02785 | 0.03006 | 0.03156 | 0.16569 | 0.13633 | 0.09189 | |
500 | 0.75926 | 1.00120 | 1.49797 | 0.07363 | 0.08283 | 0.08370 | 0.00882 | 0.01088 | 0.01110 | 0.09817 | 0.08283 | 0.05580 |
Method | n | AVEs | Bias | MSEs | MREs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLEs | 20 | 10.66634 | 0.69815 | 0.70434 | 10.15056 | 0.35036 | 0.20796 | 2560.59384 | 0.29186 | 0.10072 | 10.15056 | 0.70073 | 0.27728 |
50 | 1.67072 | 0.55715 | 0.73867 | 0.97109 | 0.15862 | 0.10938 | 63.19275 | 0.04454 | 0.02101 | 0.97109 | 0.31725 | 0.14584 | |
100 | 1.02670 | 0.53081 | 0.74374 | 0.24073 | 0.09970 | 0.07498 | 0.51058 | 0.01665 | 0.00921 | 0.24073 | 0.19939 | 0.09997 | |
200 | 1.00792 | 0.51336 | 0.74574 | 0.15385 | 0.06640 | 0.04930 | 0.04167 | 0.00727 | 0.00395 | 0.15385 | 0.13280 | 0.06573 | |
500 | 1.00540 | 0.50468 | 0.74840 | 0.09867 | 0.04157 | 0.03114 | 0.01568 | 0.00274 | 0.00153 | 0.09867 | 0.08313 | 0.04152 | |
ADEs | 20 | 17.29534 | 0.53508 | 0.72786 | 16.65270 | 0.29523 | 0.16557 | 3593.12529 | 0.15502 | 0.06100 | 16.65270 | 0.59046 | 0.22076 |
50 | 3.39687 | 0.50182 | 0.73745 | 2.65286 | 0.17299 | 0.09914 | 273.28185 | 0.04915 | 0.01733 | 2.65286 | 0.34597 | 0.13219 | |
100 | 1.35940 | 0.49382 | 0.74544 | 0.54678 | 0.11664 | 0.06810 | 18.76243 | 0.02211 | 0.00775 | 0.54678 | 0.23328 | 0.09080 | |
200 | 1.05195 | 0.50079 | 0.74686 | 0.19624 | 0.07866 | 0.04900 | 0.08054 | 0.00984 | 0.00393 | 0.19624 | 0.15732 | 0.06533 | |
500 | 1.02297 | 0.49892 | 0.74925 | 0.12031 | 0.05114 | 0.03129 | 0.02495 | 0.00412 | 0.00156 | 0.12031 | 0.10228 | 0.04172 | |
CVMEs | 20 | 28.80055 | 0.60443 | 0.72876 | 28.22486 | 0.42195 | 0.18950 | 6531.10923 | 0.35574 | 0.13008 | 28.22486 | 0.84390 | 0.25266 |
50 | 6.61153 | 0.53382 | 0.73173 | 5.93043 | 0.24163 | 0.10781 | 752.14533 | 0.09964 | 0.02226 | 5.93043 | 0.48326 | 0.14374 | |
100 | 1.92448 | 0.50863 | 0.73822 | 1.16477 | 0.16055 | 0.07253 | 55.85547 | 0.04206 | 0.00923 | 1.16477 | 0.32110 | 0.09670 | |
200 | 1.10588 | 0.50426 | 0.74532 | 0.28650 | 0.10743 | 0.04998 | 0.26844 | 0.01880 | 0.00420 | 0.28650 | 0.21486 | 0.06664 | |
500 | 1.03365 | 0.50083 | 0.74742 | 0.15593 | 0.06740 | 0.03104 | 0.04528 | 0.00716 | 0.00155 | 0.15593 | 0.13480 | 0.04138 | |
LSEs | 20 | 24.81221 | 0.56144 | 0.73570 | 24.23066 | 0.38075 | 0.18041 | 5010.98830 | 0.29532 | 0.19139 | 24.23066 | 0.76149 | 0.24055 |
50 | 6.35294 | 0.51441 | 0.73189 | 5.66583 | 0.22901 | 0.10271 | 695.64053 | 0.09017 | 0.02012 | 5.66583 | 0.45802 | 0.13694 | |
100 | 1.69405 | 0.50453 | 0.74100 | 0.93870 | 0.15992 | 0.07136 | 32.30933 | 0.04220 | 0.00901 | 0.93870 | 0.31984 | 0.09514 | |
200 | 1.15725 | 0.49988 | 0.74634 | 0.34226 | 0.11035 | 0.04861 | 1.99838 | 0.01957 | 0.00396 | 0.34226 | 0.22069 | 0.06482 | |
500 | 1.03342 | 0.49961 | 0.74872 | 0.15567 | 0.06693 | 0.03105 | 0.04564 | 0.00716 | 0.00156 | 0.15567 | 0.13386 | 0.04140 | |
WLSEs | 20 | 18.93983 | 0.53275 | 0.73201 | 18.32293 | 0.33507 | 0.16053 | 3681.49435 | 0.22646 | 0.07512 | 18.32293 | 0.67014 | 0.21404 |
50 | 3.21300 | 0.49467 | 0.73714 | 2.47225 | 0.18704 | 0.09678 | 240.64885 | 0.05822 | 0.01700 | 2.47225 | 0.37407 | 0.12904 | |
100 | 1.18486 | 0.50121 | 0.74353 | 0.38732 | 0.12284 | 0.07002 | 2.46525 | 0.02467 | 0.00835 | 0.38732 | 0.24568 | 0.09336 | |
200 | 1.06726 | 0.49571 | 0.74710 | 0.20810 | 0.08176 | 0.05000 | 0.09630 | 0.01085 | 0.00405 | 0.20810 | 0.16353 | 0.06666 | |
500 | 1.01595 | 0.50088 | 0.74943 | 0.11884 | 0.05091 | 0.03099 | 0.02346 | 0.00408 | 0.00154 | 0.11884 | 0.10181 | 0.04132 |
Method | n | AVEs | Bias | MSEs | MREs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLE | 20 | 1.88556 | 2.59014 | 3.99837 | 1.58797 | 0.96638 | 1.72681 | 392.11695 | 2.04166 | 37.32390 | 3.17594 | 0.48319 | 0.57560 |
50 | 0.50674 | 2.18512 | 3.24298 | 0.12822 | 0.45987 | 0.73043 | 0.02901 | 0.38797 | 1.07395 | 0.25645 | 0.22994 | 0.24348 | |
100 | 0.50481 | 2.08042 | 3.10209 | 0.08770 | 0.29555 | 0.47206 | 0.01292 | 0.14872 | 0.38945 | 0.17541 | 0.14778 | 0.15735 | |
200 | 0.50165 | 2.03826 | 3.05662 | 0.06187 | 0.20242 | 0.32396 | 0.00612 | 0.06561 | 0.17325 | 0.12375 | 0.10121 | 0.10799 | |
500 | 0.50005 | 2.01613 | 3.02382 | 0.03799 | 0.12291 | 0.20007 | 0.00226 | 0.02407 | 0.06423 | 0.07597 | 0.06146 | 0.06669 | |
AD | 20 | 3.96553 | 2.11542 | 3.34479 | 3.61726 | 0.85448 | 1.44437 | 535.50972 | 1.33161 | 6.85513 | 7.23452 | 0.42724 | 0.48146 |
50 | 0.60271 | 2.03972 | 3.06957 | 0.20560 | 0.46733 | 0.73634 | 2.72839 | 0.36640 | 1.03220 | 0.41120 | 0.23366 | 0.24545 | |
100 | 0.52541 | 2.01725 | 3.02193 | 0.10073 | 0.32557 | 0.49841 | 0.01861 | 0.17145 | 0.41353 | 0.20145 | 0.16279 | 0.16614 | |
200 | 0.50979 | 2.01459 | 3.01119 | 0.06788 | 0.22917 | 0.34138 | 0.00783 | 0.08375 | 0.19032 | 0.13575 | 0.11458 | 0.11379 | |
500 | 0.50379 | 2.00337 | 3.00178 | 0.04195 | 0.14183 | 0.21564 | 0.00281 | 0.03185 | 0.07349 | 0.08391 | 0.07092 | 0.07188 | |
CV | 20 | 7.57233 | 2.31764 | 7.46770 | 7.24915 | 1.19529 | 5.75209 | 1160.36446 | 2.98504 | 33,000.03944 | 14.49830 | 0.59764 | 1.91736 |
50 | 1.00678 | 2.09441 | 3.26840 | 0.63006 | 0.63320 | 1.07383 | 56.85043 | 0.71505 | 3.56632 | 1.26012 | 0.31660 | 0.35794 | |
100 | 0.53923 | 2.04312 | 3.08599 | 0.13104 | 0.41775 | 0.64473 | 0.04556 | 0.28696 | 0.76081 | 0.26208 | 0.20887 | 0.21491 | |
200 | 0.51562 | 2.02613 | 3.04866 | 0.08297 | 0.28403 | 0.43812 | 0.01229 | 0.13022 | 0.33084 | 0.16594 | 0.14201 | 0.14604 | |
500 | 0.50685 | 2.00668 | 3.01755 | 0.05017 | 0.17464 | 0.26905 | 0.00421 | 0.04904 | 0.11532 | 0.10035 | 0.08732 | 0.08968 | |
LS | 20 | 6.74249 | 2.15412 | 4.02082 | 6.42494 | 1.10222 | 2.39731 | 970.48582 | 2.38090 | 111.44446 | 12.84988 | 0.55111 | 0.79910 |
50 | 0.87003 | 2.06527 | 3.17638 | 0.49691 | 0.60725 | 1.00070 | 34.32248 | 0.65355 | 2.77405 | 0.99381 | 0.30362 | 0.33357 | |
100 | 0.56616 | 2.01473 | 3.04200 | 0.15686 | 0.40511 | 0.63364 | 2.37028 | 0.26999 | 0.74052 | 0.31371 | 0.20255 | 0.21121 | |
200 | 0.51501 | 2.01103 | 3.02743 | 0.08287 | 0.28648 | 0.43391 | 0.01198 | 0.12981 | 0.31715 | 0.16575 | 0.14324 | 0.14464 | |
500 | 0.50621 | 2.00366 | 3.00350 | 0.05139 | 0.17942 | 0.26784 | 0.00441 | 0.05089 | 0.11674 | 0.10279 | 0.08971 | 0.08928 | |
WLS | 20 | 3.88754 | 2.10038 | 3.54341 | 3.55136 | 0.94658 | 1.83658 | 680.43476 | 1.76249 | 26.14833 | 7.10272 | 0.47329 | 0.61219 |
50 | 0.59300 | 2.03469 | 3.05918 | 0.20356 | 0.51373 | 0.78963 | 2.39966 | 0.45358 | 1.29793 | 0.40711 | 0.25687 | 0.26321 | |
100 | 0.52105 | 2.01904 | 3.03118 | 0.10138 | 0.33352 | 0.52531 | 0.01853 | 0.18159 | 0.48072 | 0.20276 | 0.16676 | 0.17510 | |
200 | 0.50895 | 2.01393 | 3.02204 | 0.06985 | 0.23696 | 0.35833 | 0.00822 | 0.08908 | 0.21367 | 0.13969 | 0.11848 | 0.11944 | |
500 | 0.50324 | 2.00546 | 3.00805 | 0.04257 | 0.14463 | 0.21777 | 0.00287 | 0.03274 | 0.07518 | 0.08514 | 0.07232 | 0.07259 |
Model | -L | AI-C | CAI-C | BI-C | HQI-C | Estimates |
---|---|---|---|---|---|---|
IPLE | 180.351 | 366.702 | 367.559 | 371.099 | 368.164 | |
BE | 181.626 | 369.252 | 370.109 | 373.649 | 370.71 | |
TGE | 181.851 | 369.702 | 370.559 | 374.099 | 371.159 | |
OIPE | 182.661 | 371.321 | 372.178 | 375.718 | 372.779 | |
EE | 182.724 | 369.447 | 369.861 | 372.379 | 370.419 | |
APEE | 182.876 | 371.752 | 372.609 | 376.149 | 373.21 | |
GLLE | 183.422 | 370.845 | 371.258 | 373.776 | 371.816 | |
LE | 183.422 | 370.845 | 371.258 | 373.776 | 371.816 | |
APE | 183.787 | 371.574 | 371.987 | 374.505 | 372.545 | |
MOE | 187.319 | 378.638 | 379.052 | 381.57 | 379.61 | |
W | 194.425 | 392.85 | 393.264 | 395.782 | 393.822 | |
TE | 202.028 | 408.056 | 408.47 | 410.988 | 409.028 | |
E | 211.894 | 425.787 | 425.921 | 427.253 | 426.273 |
Model | AD | CVM | K-S | p-Value |
---|---|---|---|---|
IPLE | 0.32689 | 0.03905 | 0.08389 | 0.97794 |
BE | 0.49015 | 0.05744 | 0.10498 | 0.87228 |
TGE | 0.47873 | 0.05966 | 0.11582 | 0.78399 |
OIPE | 0.56721 | 0.07179 | 0.12591 | 0.69073 |
EE | 0.56576 | 0.07133 | 0.12591 | 0.69072 |
APEE | 0.57419 | 0.07242 | 0.12691 | 0.68125 |
GLLE | 0.60687 | 0.070002 | 0.11695 | 0.77389 |
LE | 0.60687 | 0.07000 | 0.11695 | 0.77389 |
APE | 0.94303 | 0.13285 | 0.13769 | 0.57886 |
MOE | 0.96658 | 0.11006 | 0.14402 | 0.52043 |
W | 2.84585 | 0.45267 | 0.23395 | 0.06022 |
TE | 5.46613 | 1.06381 | 0.37487 | 0.00025 |
E | 8.12694 | 1.71592 | 0.46956 | 1.48825 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL Sobhi, M.M. The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data. Mathematics 2020, 8, 2060. https://doi.org/10.3390/math8112060
AL Sobhi MM. The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data. Mathematics. 2020; 8(11):2060. https://doi.org/10.3390/math8112060
Chicago/Turabian StyleAL Sobhi, Mashail M. 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data" Mathematics 8, no. 11: 2060. https://doi.org/10.3390/math8112060
APA StyleAL Sobhi, M. M. (2020). The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data. Mathematics, 8(11), 2060. https://doi.org/10.3390/math8112060