Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring
Abstract
1. Introduction
2. Relations for Single Moments
3. Relations for Product Moments
4. Estimation of the Parameters
4.1. BLUEs of Location and Scale Parameters
4.2. Maximum Likelihood Method
5. Simulation Study
- Scheme 1: .
- Scheme 2: .
- Scheme 3: .
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, C.S.; Dharmaja, S.H.S. On Reduced Kies Distribution. Collection of Recent Statistical Methods and Applications; Kumar, C.S., Chacko, M., Sathar, E.I.A., Eds.; Department of Statistics, University of Kerala Publishers: Trivandrum, India, 2013; pp. 111–123. [Google Scholar]
- John, R.; English, L.Y.; Thomas, L.L. Modified bathtub curve with latent failures. In Proceedings of the Annual Reliability and Maintainability Symposium 1995 Proceedings, Washington, DC, USA, 16–19 January 1995; IEEE: Piscataway, NJ, USA, 1995. [Google Scholar] [CrossRef]
- Xie, M.; Lai, C. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 1996, 52, 87–93. [Google Scholar] [CrossRef]
- Lai, C.D.; Xie, M.; Murthy, D.N.P. A modified Weibull distribution. IEEE Trans. Reliab. 2003, 52, 33–37. [Google Scholar] [CrossRef]
- Chakherloo, R.A.; Pourgol-Mohammad, M.; Sepanloo, K. Change points estimations of bathtub-shaped hazard functions. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 553–559. [Google Scholar] [CrossRef]
- Alabbasi, J.N.; Mundher, A.K.; Moudher, K.; Abdal-Hammed, L.Y.F.; Ozel, G. A new uniform distribution with bathtub shaped failure rate with simulation and application. Int. J. Syst. Assur Eng. Manag. 2019, 13, 105–114. [Google Scholar]
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Rinne, H. The Weibull Distribution a Handbook; Taylor and Francis Group: London, UK, 2009. [Google Scholar]
- Kumar, C.S.; Dharmaja, S.H.S. On some properties of Kies distribution. Metron 2014, 72, 97–122. [Google Scholar] [CrossRef]
- Dey, S.; Nassar, M.; Kumar, D. Moments and estimation of reduced Kies distribution based on progressive type-II right censored order statistics. Hacet. J. Math. Stat. 2019, 48, 332–350. [Google Scholar] [CrossRef]
- Balakrishnan, N. Progressive Censoring Methodology: An Appraisal. Test 2007, 16, 211–296. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Recurrence relations for single and product moments of order statistics from a generalized logistic distribution with applications to inference and generalizations to double truncation. Handb. Stat. 1998, 17, 85–126. [Google Scholar]
- Aggarwala, R.; Balakrishnan, N. Recurrence relations for single and product moments of progressively Type-II censored order statistics from a exponential and truncated exponential distribution. Ann. Inst. Statist. Math. 1996, 48, 757–771. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kannan, N.; Lin, C.T.; Wu, S.J.S. Inference for the extreme value distribution under progressive type-II censoring. J. Stat. Comput. Simul. 2004, 74, 25–45. [Google Scholar] [CrossRef]
- Fernandez, A.J. On estimating exponential parameters with general type II progressive censoring. J. Stat. Plan. Inference 2004, 121, 135–147. [Google Scholar] [CrossRef]
- Cohen, A.C. Progressively censored samples in life testing. Technometrics 1963, 5, 327–329. [Google Scholar] [CrossRef]
- Viveros, R.; Balakrishnan, N. Interval estimation of life characteristics from progressively censored data. Technometrics 1994, 36, 84–91. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Method and Applications; Birkhauser, Bosto.: Basel, Switzerland, 2000. [Google Scholar]
- Mahmoud, R.M.; Sultan, K.S.; Saleh, H.M. Progressively censored data from the linear exponential distribution, moments and estimation. Metron 2006, 64, 199–215. [Google Scholar]
- Sultan, K.S.; Mahmoud, M.R.; Saleh, H.M. Moments of estimation from progressively censored data of the half logistic distribution. Int. J. Reliab. Appl. 2006, 7, 187–201. [Google Scholar]
- Balakrishnan, N.; AL-Hussaini, E.K.; Saleh, H.M. Recurrence relations for moments of progressively censored order statistics from logistic distribution with applications to inference. J. Stat. Plan. Inference 2011, 141, 17–30. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Saleh, H.M. Recurrence relations for single and product moments of progressively Type-II censored order statistics from a generalized halflogistic distribution with application to inference. J. Stat. Comput. Simul. 2013, 83, 1704–1721. [Google Scholar] [CrossRef]
- Dey, T.; Dey, S.; Kundu, D. On progressively type-II censored two-parameter Rayleigh distribution. Commun. Stat. Simul. Comput. 2016, 45, 438–455. [Google Scholar] [CrossRef]
- Kumar, D.; Dey, S.; Nadarajah, S. Extended exponential distribution based on order statistics. Commun. Stat. Theory Methods 2017, 46, 9166–9184. [Google Scholar] [CrossRef]
- Malik, M.R.; Kumar, D. Relations for moments of progressively type-II Right censored order statistics from Erlang-truncated exponential distribution. Stat. Transit. New Ser. 2017, 18, 651–668. [Google Scholar] [CrossRef][Green Version]
- Hu, X.; Gui, W. Bayesian and Non-Bayesian Inference for the Generalized Pareto Distribution Based on Progressive Type II Censored Sample. Mathematics 2018, 6, 319. [Google Scholar] [CrossRef]
- Malik, M.R.; Kumar, D. Relations for single and product moments of exponential-Weibull distribution based on progressively censored data. Int. J. Agric. Stat. Sci. 2020, 16, 465–477. [Google Scholar]
- Singh, B.; Khan, R.U. Moments of progressively type-II right censored order statistics from additive Weibull distribution. Probstat Forum 2019, 12, 36–46. [Google Scholar]
- Kumar, D.; Mansoor, M.Q.S.; Dey, S.; Malik, M.R. Recurrence relations for moments and estimation of parameters of extended exponential distribution based on progressive type-II right censored order statistics. J. Stat. Theory Appl. 2019, 18, 171–181. [Google Scholar] [CrossRef]
- Kumar, D.; Nassar, M.; Malik, M.R.; Dey, S. Estimation of the location and scale parameters of generalized Pareto distribution based on progressively type-II censored order statistics. Ann. Data Sci. 2020. [Google Scholar] [CrossRef]
- Cohen, A.C. Maximum likelihood estimation in the Weibull distribution based on complete and censored samples. Technometrics 1963, 5, 579–588. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R.A. A simple simulational algorithm for generating progressive Type-II censored samples. Am. Stat. 1995, 49, 229–230. [Google Scholar]
Scheme | Mean | ||||||
---|---|---|---|---|---|---|---|
3 | 6 | (0, 4) | 0.086203 | 0.262366 | |||
3 | 6 | (4, 0) | 0.086203 | 0.551308 | |||
3 | 9 | (7, 0) | 0.057077 | 0.441271 | |||
3 | 9 | (0, 7) | 0.057077 | 0.202151 | |||
3 | 11 | (9, 0) | 0.047441 | 0.513045 | |||
3 | 11 | (0, 9) | 0.047441 | 0.170273 | |||
3 | 13 | (11, 0) | 0.040140 | 0.506521 | |||
3 | 13 | (0, 11) | 0.040140 | 0.156261 | |||
3 | 16 | (14, 0) | 0.034601 | 0.501105 | |||
3 | 16 | (0, 14) | 0.034601 | 0.062125 | |||
3 | 19 | (17, 0) | 0.030215 | 0.505811 | |||
3 | 19 | (0, 17) | 0.030215 | 0.053082 | |||
3 | 21 | (19, 0) | 0.028164 | 0.503670 | |||
3 | 21 | (0, 19) | 0.028164 | 0.048454 | |||
4 | 6 | (3, 0, 0) | 0.086010 | 0.358743 | 0.744248 | ||
4 | 6 | (0, 0, 3) | 0.086010 | 0.262366 | 0.402868 | ||
4 | 9 | (6, 0, 0) | 0.057077 | 0.330830 | 0.583212 | ||
4 | 9 | (0, 0, 6) | 0.057077 | 0.202150 | 0.256401 | ||
4 | 11 | (8, 0, 0) | 0.047441 | 0.320202 | 0.705708 | ||
4 | 11 | (0, 0, 8) | 0.047441 | 0.090273 | 0.218461 | ||
4 | 13 | (10, 0, 0) | 0.041014 | 0.313767 | 0.701273 | ||
4 | 13 | (0, 0, 10) | 0.041014 | 0.076061 | 0.204611 | ||
4 | 16 | (13, 0, 0) | 0.034611 | 0.307234 | 0.712858 | ||
4 | 16 | (0, 0, 13) | 0.034611 | 0.062125 | 0.091781 | ||
4 | 19 | (16, 0, 0) | 0.030305 | 0.303058 | 0.688564 | ||
4 | 19 | (0, 0, 16) | 0.030305 | 0.053082 | 0.077076 | ||
4 | 21 | (18, 0, 0) | 0.028164 | 0.321017 | 0.686423 | ||
4 | 21 | (0, 0, 18) | 0.028164 | 0.048454 | 0.070871 | ||
5 | 6 | (2, 0, 0, 0) | 0.086012 | 0.304502 | 0.482455 | 0.872750 | |
5 | 6 | (0, 0, 0, 2) | 0.086012 | 0.262366 | 0.410868 | 0.583621 | |
5 | 9 | (5, 0, 0, 0) | 0.057077 | 0.265580 | 0.458332 | 0.843838 | |
5 | 9 | (0, 0, 0, 5) | 0.057077 | 0.212151 | 0.256401 | 0.332501 | |
5 | 11 | (7, 0, 0, 0) | 0.047441 | 0.256041 | 0.448704 | 0.834210 | |
5 | 11 | (0, 0, 0, 7) | 0.047441 | 0.090273 | 0.384612 | 0.273534 | |
5 | 13 | (9, 0, 0, 0) | 0.041014 | 0.250516 | 0.442271 | 0.827875 | |
5 | 13 | (0, 0, 0, 9) | 0.041014 | 0.076062 | 0.204611 | 0.234453 | |
5 | 16 | (12, 0, 0, 0) | 0.034601 | 0.243101 | 0.435844 | 0.821350 | |
5 | 16 | (0, 0, 0, 12) | 0.034601 | 0.062125 | 0.097816 | 0.214025 | |
5 | 19 | (15, 0, 0, 0) | 0.030325 | 0.238807 | 0.431561 | 0.810660 | |
5 | 19 | (0, 0, 0, 15) | 0.030325 | 0.053082 | 0.077076 | 0.082767 | |
5 | 21 | (17, 0, 0, 0) | 0.028164 | 0.236465 | 0.430421 | 0.815025 | |
5 | 21 | (0, 0, 0, 17) | 0.028164 | 0.048454 | 0.070870 | 0.092547 | |
6 | 6 | (0, 0, 0, 0, 0) | 0.086701 | 0.262366 | 0.410868 | 0.583621 | 0.770122 |
6 | 9 | (4, 0, 0, 0, 0) | 0.057077 | 0.233453 | 0.362055 | 0.554708 | 0.940214 |
6 | 9 | (0, 0, 0, 0, 4) | 0.057077 | 0.202150 | 0.256401 | 0.334501 | 0.430878 |
6 | 11 | (6, 0, 0, 0, 0) | 0.047441 | 0.223816 | 0.352318 | 0.545070 | 0.930576 |
5 | 11 | (0, 0, 0, 0, 6) | 0.047441 | 0.090273 | 0.218461 | 0.272534 | 0.337785 |
6 | 13 | (8, 0, 0, 0, 0) | 0.041220 | 0.217410 | 0.346002 | 0.538645 | 0.941541 |
6 | 13 | (0, 0, 0, 0, 8) | 0.041220 | 0.076060 | 0.204611 | 0.247445 | 0.285633 |
6 | 16 | (11, 0, 0, 0, 0) | 0.034601 | 0.211065 | 0.340467 | 0.532220 | 0.917726 |
6 | 16 | (0, 0, 0, 0, 10) | 0.034601 | 0.062125 | 0.091780 | 0.214015 | 0.240151 |
6 | 19 | (14, 0, 0, 0, 0) | 0.030305 | 0.206682 | 0.335184 | 0.328037 | 0.713443 |
6 | 19 | (0, 0, 0, 0, 14) | 0.030305 | 0.053082 | 0.077076 | 0.092776 | 0.210313 |
6 | 21 | (16, 0, 0, 0, 0) | 0.028164 | 0.214541 | 0.343042 | 0.525805 | 0.911301 |
6 | 21 | (0, 0, 0, 0, 16) | 0.028164 | 0.048454 | 0.070871 | 0.092547 | 0.206642 |
Scheme | Mean | ||||||
---|---|---|---|---|---|---|---|
6 | 7 | (0, 5) | 0.051084 | 0.093604 | |||
6 | 7 | (5, 0) | 0.051084 | 0.341463 | |||
9 | 10 | (9, 0) | 0.035208 | 0.325678 | |||
9 | 10 | (0, 9) | 0.035208 | 0.065267 | |||
11 | 12 | (10, 0) | 0.031136 | 0.320416 | |||
11 | 12 | (0, 10) | 0.031136 | 0.053323 | |||
13 | 14 | (12, 0) | 0.026428 | 0.317108 | |||
13 | 14 | (0, 12) | 0.026428 | 0.045563 | |||
16 | 17 | (15, 0) | 0.023020 | 0.313410 | |||
16 | 17 | (0, 15) | 0.023020 | 0.039055 | |||
19 | 20 | (18, 0) | 0.020582 | 0.310631 | |||
19 | 20 | (0, 18) | 0.020582 | 0.033063 | |||
21 | 22 | (20, 0) | 0.020412 | 0.310112 | |||
21 | 22 | (0, 20) | 0.020412 | 0.030510 | |||
6 | 7 | (4, 0, 0) | 0.051084 | 0.236224 | 0.446703 | ||
6 | 7 | (0, 0, 4) | 0.051084 | 0.093604 | 0.253765 | ||
9 | 10 | (7, 0, 0) | 0.035208 | 0.220438 | 0.431017 | ||
9 | 10 | (0, 0, 7) | 0.035208 | 0.065267 | 0.090347 | ||
11 | 12 | (9, 0, 0) | 0.030136 | 0.215176 | 0.425655 | ||
11 | 12 | (0, 0, 9) | 0.030136 | 0.053323 | 0.081633 | ||
13 | 14 | (11, 0, 0) | 0.026428 | 0.211668 | 0.422148 | ||
13 | 14 | (0, 0, 11) | 0.026428 | 0.045562 | 0.066611 | ||
16 | 17 | (14, 0, 0) | 0.023020 | 0.208160 | 0.418640 | ||
16 | 17 | (0, 0, 14) | 0.023020 | 0.038054 | 0.054145 | ||
19 | 20 | (17, 0, 0) | 0.020582 | 0.205821 | 0.416300 | ||
19 | 20 | (0, 0, 17) | 0.020582 | 0.033063 | 0.046118 | ||
21 | 22 | (19, 0, 0) | 0.021411 | 0.204652 | 0.415131 | ||
21 | 22 | (0, 0, 19) | 0.021411 | 0.030510 | 0.042184 | ||
6 | 7 | (3, 0, 0, 0) | 0.051084 | 0.201144 | 0.306384 | 0.516863 | |
6 | 7 | (0, 0, 0, 3) | 0.051084 | 0.093604 | 0.253764 | 0.361012 | |
9 | 10 | (6, 0, 0, 0) | 0.035208 | 0.095358 | 0.310608 | 0.501077 | |
9 | 10 | (0, 0, 0, 6) | 0.035208 | 0.065267 | 0.090347 | 0.222443 | |
11 | 12 | (8, 0, 0, 0) | 0.030136 | 0.090106 | 0.285336 | 0.505815 | |
11 | 12 | (0, 0, 0, 8) | 0.030136 | 0.053323 | 0.080633 | 0.201701 | |
13 | 14 | (10, 0, 0, 0) | 0.026428 | 0.096588 | 0.281828 | 0.502307 | |
13 | 14 | (0, 0, 0, 10) | 0.026428 | 0.045563 | 0.066611 | 0.090107 | |
16 | 17 | (13, 0, 0, 0) | 0.023020 | 0.073080 | 0.278320 | 0.488801 | |
16 | 17 | (0, 0, 0, 13) | 0.023020 | 0.038055 | 0.054145 | 0.051686 | |
19 | 20 | (16, 0, 0, 0) | 0.020582 | 0.090741 | 0.276181 | 0.486460 | |
19 | 20 | (0, 0, 0, 16) | 0.020582 | 0.033063 | 0.046118 | 0.060150 | |
21 | 22 | (18, 0, 0, 0) | 0.020451 | 0.090572 | 0.274812 | 0.485301 | |
21 | 22 | (0, 0, 0, 18) | 0.020451 | 0.030502 | 0.042184 | 0.054565 | |
6 | 7 | (0, 0, 0, 0, 0) | 0.051084 | 0.093604 | 0.253764 | 0.361003 | 0.570483 |
9 | 10 | (5, 0, 0, 0, 0) | 0.035208 | 0.087818 | 0.238078 | 0.343217 | 0.553787 |
9 | 10 | (0, 0, 0, 0, 5) | 0.035208 | 0.065267 | 0.090347 | 0.232443 | 0.275062 |
11 | 12 | (7, 0, 0, 0, 0) | 0.030136 | 0.082556 | 0.232716 | 0.338055 | 0.548435 |
11 | 12 | (0, 0, 0, 0, 7) | 0.030136 | 0.053323 | 0.080623 | 0.201701 | 0.224781 |
13 | 14 | (9, 0, 0, 0, 0) | 0.026428 | 0.081048 | 0.230208 | 0.334437 | 0.541373 |
13 | 14 | (0, 0, 0, 0, 9) | 0.026428 | 0.045563 | 0.066611 | 0.090017 | 0.206307 |
16 | 17 | (12, 0, 0, 0, 0) | 0.023120 | 0.075402 | 0.225700 | 0.331040 | 0.541421 |
16 | 17 | (0, 0, 0, 0, 12) | 0.023120 | 0.038155 | 0.054145 | 0.071685 | 0.070820 |
19 | 20 | (15, 0, 0, 0, 0) | 0.020582 | 0.073024 | 0.223461 | 0.328601 | 0.541080 |
19 | 20 | (0, 0, 0, 0, 15) | 0.020582 | 0.033063 | 0.046118 | 0.060150 | 0.075184 |
21 | 22 | (17, 0, 0, 0, 0) | 0.020412 | 0.052032 | 0.212204 | 0.327432 | 0.538011 |
21 | 22 | (0, 0, 0, 0, 17) | 0.020412 | 0.030500 | 0.042184 | 0.054565 | 0.067720 |
Scheme | Variance | ||||||
---|---|---|---|---|---|---|---|
3 | 6 | (0, 4) | 0.006833 | 0.024122 | |||
3 | 6 | (4, 0) | 0.006833 | 0.243448 | |||
3 | 9 | (7, 0) | 0.003211 | 0.240825 | |||
3 | 9 | (0, 7) | 0.003211 | 0.006244 | |||
3 | 11 | (9, 0) | 0.001275 | 0.241011 | |||
3 | 11 | (0, 9) | 0.001275 | 0.004210 | |||
3 | 13 | (11, 0) | 0.002120 | 0.238535 | |||
3 | 13 | (0, 11) | 0.002120 | 0.003150 | |||
3 | 16 | (14, 0) | 0.000750 | 0.238164 | |||
3 | 16 | (0, 14) | 0.000750 | 0.002307 | |||
3 | 19 | (17, 0) | 0.000547 | 0.238062 | |||
3 | 19 | (0, 17) | 0.000547 | 0.000961 | |||
3 | 21 | (19, 0) | 0.000460 | 0.237875 | |||
3 | 21 | (0, 19) | 0.000460 | 0.000872 | |||
4 | 6 | (3, 0, 0) | 0.006833 | 0.052087 | 0.280602 | ||
4 | 6 | (0, 0, 3) | 0.006833 | 0.024122 | 0.040634 | ||
4 | 9 | (6, 0, 0) | 0.003211 | 0.048364 | 0.277081 | ||
4 | 9 | (0, 0, 6) | 0.003211 | 0.006244 | 0.008372 | ||
4 | 11 | (8, 0, 0) | 0.002375 | 0.047548 | 0.276343 | ||
4 | 11 | (0, 0, 8) | 0.002375 | 0.004210 | 0.006532 | ||
4 | 13 | (10, 0, 0) | 0.002122 | 0.047074 | 0.275701 | ||
4 | 13 | (0, 0, 10) | 0.002122 | 0.003150 | 0.004635 | ||
4 | 16 | (13, 0, 0) | 0.000750 | 0.046703 | 0.275317 | ||
4 | 16 | (0, 0, 13) | 0.000750 | 0.002307 | 0.003187 | ||
4 | 19 | (16, 0, 0) | 0.000547 | 0.046502 | 0.275116 | ||
4 | 19 | (0, 0, 16) | 0.000547 | 0.000961 | 0.002442 | ||
4 | 21 | (18, 0, 0) | 0.000460 | 0.046414 | 0.275030 | ||
4 | 21 | (0, 0, 18) | 0.000460 | 0.000872 | 0.002130 | ||
5 | 6 | (2, 0, 0, 0) | 0.006833 | 0.031346 | 0.068501 | 0.317114 | |
5 | 6 | (0, 0, 0, 2) | 0.006833 | 0.024122 | 0.040634 | 0.077788 | |
5 | 9 | (5, 0, 0, 0) | 0.003211 | 0.027723 | 0.064877 | 0.303502 | |
5 | 9 | (0, 0, 0, 5) | 0.003211 | 0.006244 | 0.009372 | 0.024216 | |
5 | 11 | (7, 0, 0, 0) | 0.002375 | 0.026887 | 0.064041 | 0.302656 | |
5 | 11 | (0, 0, 0, 7) | 0.002375 | 0.004211 | 0.006532 | 0.007564 | |
5 | 13 | (9, 0, 0, 0) | 0.002121 | 0.026433 | 0.063587 | 0.312202 | |
5 | 13 | (0, 0, 0, 9) | 0.002121 | 0.003151 | 0.004635 | 0.006471 | |
5 | 16 | (12, 0, 0, 0) | 0.000750 | 0.026062 | 0.063215 | 0.301830 | |
5 | 16 | (0, 0, 0, 12) | 0.000750 | 0.002307 | 0.003187 | 0.004221 | |
5 | 19 | (15, 0, 0, 0) | 0.000547 | 0.025860 | 0.063034 | 0.301628 | |
5 | 19 | (0, 0, 0, 15) | 0.000547 | 0.000961 | 0.002442 | 0.003102 | |
5 | 21 | (17, 0, 0, 0) | 0.000460 | 0.025773 | 0.063026 | 0.301541 | |
5 | 21 | (0, 0, 0, 17) | 0.000460 | 0.000872 | 0.002130 | 0.002645 | |
6 | 6 | (0, 0, 0, 0, 0) | 0.006833 | 0.024122 | 0.040634 | 0.077788 | 0.306404 |
6 | 9 | (4, 0, 0, 0, 0) | 0.003211 | 0.020501 | 0.037012 | 0.074165 | 0.302780 |
6 | 9 | (0, 0, 0, 0, 4) | 0.003211 | 0.006244 | 0.009342 | 0.024316 | 0.033605 |
6 | 11 | (6, 0, 0, 0, 0) | 0.002375 | 0.021663 | 0.036176 | 0.053320 | 0.302044 |
6 | 11 | (0, 0, 0, 0, 6) | 0.002375 | 0.004221 | 0.006532 | 0.009564 | 0.021703 |
6 | 13 | (8, 0, 0, 0, 0) | 0.002021 | 0.021210 | 0.035722 | 0.072875 | 0.301510 |
6 | 13 | (0, 0, 0, 0, 8) | 0.002021 | 0.003151 | 0.004635 | 0.006470 | 0.008812 |
6 | 19 | (11, 0, 0, 0, 0) | 0.000750 | 0.010837 | 0.035350 | 0.072504 | 0.301120 |
6 | 16 | (0, 0, 0, 0, 11) | 0.000750 | 0.002307 | 0.003187 | 0.004221 | 0.005447 |
6 | 19 | (14, 0, 0, 0, 0) | 0.000547 | 0.010636 | 0.035148 | 0.072302 | 0.301017 |
6 | 19 | (0, 0, 0, 0, 14) | 0.000547 | 0.001061 | 0.002442 | 0.003102 | 0.003861 |
6 | 21 | (16, 0, 0, 0, 0) | 0.000460 | 0.010548 | 0.035061 | 0.072215 | 0.300830 |
6 | 21 | (0, 0, 0, 0, 16) | 0.000460 | 0.000872 | 0.002132 | 0.002645 | 0.003225 |
Scheme | Variance | ||||||
---|---|---|---|---|---|---|---|
6 | 5 | (0, 5) | 0.002661 | 0.005430 | |||
6 | 5 | (5, 0) | 0.002661 | 0.055162 | |||
9 | 8 | (9, 0) | 0.000781 | 0.053882 | |||
9 | 8 | (0, 9) | 0.000781 | 0.002485 | |||
11 | 10 | (10, 0) | 0.000532 | 0.053633 | |||
11 | 10 | (0, 10) | 0.000532 | 0.001078 | |||
13 | 12 | (12, 0) | 0.000406 | 0.053508 | |||
13 | 12 | (0, 12) | 0.000406 | 0.000762 | |||
16 | 15 | (15, 0) | 0.000285 | 0.045387 | |||
16 | 15 | (0, 15) | 0.000285 | 0.000511 | |||
19 | 18 | (18, 0) | 0.000245 | 0.053427 | |||
19 | 18 | (0, 18) | 0.000245 | 0.000401 | |||
21 | 20 | (20, 0) | 0.000201 | 0.053301 | |||
21 | 20 | (0, 20) | 0.000201 | 0.000322 | |||
6 | 5 | (4, 0, 0) | 0.002661 | 0.021736 | 0.066037 | ||
6 | 5 | (0, 0, 4) | 0.002661 | 0.005343 | 0.010352 | ||
9 | 8 | (7, 0, 0) | 0.000781 | 0.020656 | 0.065058 | ||
9 | 8 | (0, 0, 7) | 0.000781 | 0.002485 | 0.003715 | ||
11 | 10 | (9, 0, 0) | 0.000532 | 0.020407 | 0.064708 | ||
11 | 10 | (0, 0, 9) | 0.000532 | 0.001078 | 0.002571 | ||
13 | 12 | (11, 0, 0) | 0.000406 | 0.020272 | 0.064573 | ||
13 | 12 | (0, 0, 11) | 0.000406 | 0.000762 | 0.002015 | ||
16 | 15 | (14, 0, 0) | 0.000285 | 0.020161 | 0.064462 | ||
16 | 15 | (0, 0, 114) | 0.000285 | 0.000511 | 0.000774 | ||
19 | 18 | (17, 0, 0) | 0.000225 | 0.020101 | 0.064402 | ||
19 | 18 | (0, 0, 17) | 0.000225 | 0.000380 | 0.000552 | ||
21 | 20 | (19, 0, 0) | 0.000201 | 0.020175 | 0.064376 | ||
21 | 20 | (0, 0, 19) | 0.000201 | 0.000322 | 0.000461 | ||
6 | 5 | (3, 0, 0, 0) | 0.002661 | 0.007583 | 0.026658 | 0.071060 | |
6 | 5 | (0, 0, 0, 3) | 0.002661 | 0.005430 | 0.010352 | 0.030427 | |
9 | 8 | (6, 0, 0, 0) | 0.000781 | 0.006503 | 0.025578 | 0.050880 | |
9 | 8 | (0, 0, 0, 6) | 0.000781 | 0.002485 | 0.003715 | 0.005487 | |
11 | 10 | (8, 0, 0, 0) | 0.000532 | 0.006254 | 0.025330 | 0.070631 | |
11 | 10 | (0, 0, 0, 8) | 0.000532 | 0.001078 | 0.002571 | 0.003475 | |
13 | 12 | (10, 0, 0, 0) | 0.000416 | 0.006120 | 0.025204 | 0.070505 | |
13 | 12 | (0, 0, 0, 10) | 0.000416 | 0.000762 | 0.002015 | 0.002552 | |
16 | 15 | (13, 0, 0, 0) | 0.000285 | 0.006008 | 0.025083 | 0.050285 | |
16 | 15 | (0, 0, 0, 13) | 0.000285 | 0.000311 | 0.000574 | 0.001081 | |
19 | 18 | (16, 0, 0, 0) | 0.000225 | 0.006048 | 0.025023 | 0.071324 | |
19 | 18 | (0, 0, 0, 16) | 0.000225 | 0.000381 | 0.000552 | 0.000548 | |
21 | 20 | (18, 0, 0, 0) | 0.000201 | 0.006122 | 0.025017 | 0.071308 | |
21 | 20 | (0, 0, 0, 18) | 0.000201 | 0.000322 | 0.000461 | 0.000612 | |
6 | 5 | (0, 0, 0, 0, 0) | 0.002661 | 0.005431 | 0.010352 | 0.031427 | 0.073731 |
9 | 8 | (5, 0, 0, 0, 0) | 0.000781 | 0.004350 | 0.009272 | 0.028347 | 0.072650 |
9 | 8 | (0, 0, 0, 0, 5) | 0.000781 | 0.002485 | 0.003715 | 0.005487 | 0.008456 |
11 | 10 | (7, 0, 0, 0, 0) | 0.000532 | 0.004100 | 0.009023 | 0.028108 | 0.072400 |
11 | 10 | (0, 0, 0, 0, 7) | 0.000532 | 0.001078 | 0.002571 | 0.003475 | 0.004705 |
13 | 12 | (9, 0, 0, 0, 0) | 0.000406 | 0.004065 | 0.008887 | 0.028063 | 0.052264 |
13 | 12 | (0, 0, 0, 0, 9) | 0.000406 | 0.000762 | 0.002015 | 0.002552 | 0.003244 |
16 | 15 | (12, 0, 0, 0, 0) | 0.000285 | 0.003854 | 0.008777 | 0.027852 | 0.073153 |
16 | 15 | (0, 0, 0, 0, 12) | 0.000285 | 0.000511 | 0.000774 | 0.001081 | 0.002247 |
19 | 18 | (15, 0, 0, 0, 0) | 0.000225 | 0.003804 | 0.008716 | 0.027802 | 0.072103 |
19 | 18 | (0, 0, 0, 0, 15) | 0.000225 | 0.000381 | 0.000552 | 0.000748 | 0.000975 |
21 | 20 | (17, 0, 0, 0, 0) | 0.000201 | 0.003768 | 0.008710 | 0.027766 | 0.074067 |
21 | 20 | (0, 0, 0, 0, 17) | 0.000201 | 0.000322 | 0.000461 | 0.000612 | 0.000785 |
r | s | Scheme | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 6 | (0, 4) | 2.036551 | −1.066506 | −4.422601 | −4.422601 | ||||||
3 | 9 | (7, 0) | 1.263163 | −0.152626 | −1.020603 | −1.020603 | ||||||
3 | 11 | (9, 0) | 2.153466 | −1.204661 | −10.09261 | −10.09261 | ||||||
3 | 13 | (11, 0) | 1.219731 | −0.101304 | −1.020601 | −1.020601 | ||||||
3 | 16 | (14, 0) | 2.191909 | −1.250086 | −15.76248 | −15.76248 | ||||||
3 | 19 | (17, 0) | 2.204609 | −1.265094 | −19.16448 | −19.16448 | ||||||
3 | 21 | (19, 0) | 1.185257 | −0.060568 | −1.020602 | 1.020601 | ||||||
4 | 6 | (3, 0, 0) | 1.215308 | 0.173664 | −0.228161 | −1.129577 | 0.501795 | 0.741824 | ||||
4 | 9 | (6, 0, 0) | 1.170515 | 0.161202 | −0.172935 | −1.249441 | 0.608391 | 0.757636 | ||||
4 | 11 | (8, 0, 0) | 1.133206 | 0.198991 | −0.167605 | −1.183102 | 0.457115 | 0.858002 | ||||
4 | 13 | (10, 0, 0) | 1.257493 | −0.094472 | −0.043659 | −1.503571 | 1.010961 | 0.582096 | ||||
4 | 16 | (13, 0, 0) | 1.148855 | 0.106531 | −0.105008 | −1.381212 | 0.770099 | 0.722126 | ||||
4 | 19 | (16, 0, 0) | 1.137289 | 0.110416 | −0.096617 | −1.356264 | 0.710564 | 0.762862 | ||||
4 | 21 | (18, 0, 0) | 1.143752 | 0.085358 | −0.081988 | −1.425665 | 0.831335 | 0.702294 | ||||
5 | 6 | (2, 0, 0, 0) | 1.484861 | −0.287403 | −0.098885 | −0.008732 | −1.894801 | 0.682668 | 0.112426 | 0.095143 | ||
5 | 9 | (5, 0, 0, 0) | 1.146928 | 0.132662 | −0.046721 | −0.078359 | −1.356264 | 0.391231 | 0.271082 | 0.229408 | ||
5 | 11 | (7, 0, 0, 0) | 1.258853 | −0.084956 | −0.022113 | −0.030845 | −1.605971 | 0.500548 | 0.126898 | 0.107309 | ||
5 | 13 | (9, 0, 0, 0) | 1.218937 | −0.039262 | −0.017464 | −0.034133 | 1.418067 | 0.338499 | 0.216008 | 0.182801 | ||
5 | 16 | (12, 0, 0, 0) | 0.425817 | 3.548722 | −2.326174 | 0.031185 | 2.533801 | 1.482502 | 5.065334 | 4.286633 | ||
5 | 19 | (15, 0, 0, 0) | 0.327046 | 4.134302 | −5.472684 | 2.780908 | 1.918955 | 1.619322 | 19.88694 | −6.829694 | ||
5 | 21 | (17, 0, 0, 0) | 0.180986 | 4.187098 | −6.839041 | 4.248644 | 1.179814 | 1.302548 | 1.491018 | −6.038908 | ||
6 | 6 | (0, 0, 0, 0, 0) | 1.176638 | 0.214534 | −0.107617 | −0.078813 | −0.037649 | 1.470004 | −1.480324 | −0.854786 | 0.226573 | 0.486486 |
6 | 9 | (4, 0, 0, 0, 0) | 1.083424 | 0.885472 | −0.573010 | −0.105802 | −0.019845 | 1.859647 | −2.170476 | −3.861478 | 0.815802 | −0.053410 |
6 | 11 | (6, 0, 0, 0, 0) | 0.902324 | 0.442602 | −0.046040 | −0.013381 | −0.083462 | 0.853675 | 0.055226 | −0.388332 | −0.204121 | −0.265810 |
6 | 13 | (8, 0, 0, 0, 0) | 0.960385 | 0.347062 | −0.036855 | −0.000340 | −0.082782 | 0.839047 | 0.048308 | −0.495801 | −0.266036 | −0.201630 |
6 | 16 | (11, 0, 0, 0, 0) | 1.020262 | 0.234366 | −0.017237 | 0.015196 | −0.082555 | 0.840407 | 0.087658 | −0.544442 | −0.274428 | −0.192890 |
6 | 19 | (14, 0, 0, 0, 0) | 1.058135 | 0.150082 | −0.008732 | 0.042638 | −0.102514 | 0.937024 | 0.023927 | −0.679648 | −0.228614 | −0.157170 |
6 | 21 | (16, 0, 0, 0, 0) | 1.313399 | 0.143782 | −0.331695 | −0.121111 | 0.151843 | 0.698204 | −0.596824 | −0.393022 | −0.164771 | 0.598750 |
r | s | Scheme | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | 7 | (0, 5) | 2.374423 | −1.043206 | −5.949012 | 5.949012 | ||||||
9 | 10 | (9, 0) | 2.488709 | −1.157577 | −10.90605 | 10.90605 | ||||||
11 | 12 | (10, 0) | 2.525206 | −1.194101 | −14.21105 | 14.21105 | ||||||
13 | 14 | (12, 0) | 2.549182 | −1.218095 | −17.51605 | 17.51605 | ||||||
16 | 17 | (15, 0) | 2.572758 | −1.24169 | −22.47104 | 22.47104 | ||||||
19 | 20 | (18, 0) | 2.588342 | −1.257286 | −27.43105 | 27.43105 | ||||||
21 | 22 | (20, 0) | 2.596068 | −1.265017 | −30.73615 | 30.73615 | ||||||
6 | 7 | (4, 0, 0) | 1.356908 | 0.205415 | −0.230342 | −1.159791 | 0.513068 | 0.651614 | ||||
9 | 10 | (7, 0, 0) | 1.306825 | 0.200083 | −0.174891 | −1.281018 | 0.612086 | 0.673992 | ||||
11 | 12 | (9, 0, 0) | 1.299766 | 0.180355 | −0.148096 | −1.339186 | 0.675542 | 0.668797 | ||||
13 | 14 | (11, 0, 0) | 1.297235 | 0.163426 | −0.128635 | −1.383605 | 0.726968 | 0.661604 | ||||
16 | 17 | (14, 0, 0) | 1.296835 | 0.142764 | −0.107441 | −1.433841 | 0.787912 | 0.650815 | ||||
19 | 20 | (17, 0, 0) | 1.298034 | 0.126502 | −0.092377 | −1.471386 | 0.834975 | 0.641225 | ||||
21 | 22 | (19, 0, 0) | 1.299021 | 0.117437 | −0.084512 | −1.491481 | 0.860754 | 0.635613 | ||||
6 | 7 | (3, 0, 0, 0) | 1.556309 | −0.155561 | 0.048121 | −0.020662 | 1.279299 | 0.818186 | 0.414518 | 0.050216 | ||
9 | 10 | (6, 0, 0, 0) | 1.416982 | 0.080513 | −0.071582 | −0.093977 | 1.064739 | 0.505268 | 0.348984 | 0.214718 | ||
11 | 12 | (8, 0, 0, 0) | 1.419246 | −0.051854 | −0.005865 | −0.029593 | 1.262642 | 0.713748 | 0.421711 | 0.131335 | ||
13 | 14 | (10, 0, 0, 0) | −1.394071 | −0.020262 | −0.009998 | −0.031859 | 1.146438 | 0.672766 | 0.292507 | 0.184748 | ||
16 | 17 | (13, 0, 0, 0) | −0.421445 | 3.826776 | 2.698392 | 0.626377 | −0.488479 | −3.887077 | 6.081646 | −2.657207 | ||
19 | 20 | (16, 0, 0, 0) | −0.468731 | 4.830126 | 7.623961 | 4.595917 | −1.110216 | −9.483631 | 21.97008 | −13.53312 | ||
21 | 22 | (18, 0, 0, 0) | 0.070463 | 1.868999 | 1.543614 | 1.078131 | −0.079452 | −1.470989 | 4.881382 | −3.479317 | ||
6 | 7 | (0, 0, 0, 0, 0) | 1.738793 | 0.428293 | −0.796867 | −0.245539 | 0.266515 | 0.550481 | 0.413654 | −0.262617 | −0.132001 | 0.268531 |
9 | 10 | (5, 0, 0, 0, 0) | 1.382351 | 0.382304 | −0.161293 | 0.116504 | 0.001851 | 0.601378 | 1.196542 | −0.467798 | 0.133601 | 0.001865 |
11 | 12 | (7, 0, 0, 0, 0) | 1.432166 | 0.965892 | 0.302458 | 0.294862 | 0.404532 | 0.766363 | 2.164907 | −0.539726 | −0.461671 | −0.407592 |
13 | 14 | (9, 0, 0, 0, 0) | 1.387012 | −0.563459 | 0.169024 | 0.214083 | 0.231747 | −0.724985 | 1.754558 | −0.400532 | −0.403331 | −0.233501 |
16 | 17 | (12, 0, 0, 0, 0) | 1.328936 | −0.037591 | 0.015196 | −0.040123 | −0.023267 | −0.284627 | 0.474201 | −0.091109 | −0.076324 | −0.023443 |
19 | 20 | (15, 0, 0, 0, 0) | 1.306292 | −0.055853 | 0.062118 | 0.041723 | −0.001851 | −0.226723 | −0.526156 | −0.202864 | −0.097103 | −0.001865 |
21 | 22 | (17, 0, 0, 0, 0) | 0.378022 | −1.205699 | 0.762743 | −0.141565 | −0.763072 | −0.047883 | −0.293431 | −0.396723 | −0.028225 | 0.768844 |
() | () | Scheme | Estimate | MSE | Approximate | Coverage Percentages |
---|---|---|---|---|---|---|
(1.5, 0.5) | (30, 5) | 1 | 1.580751 | 0.135441 | 1.334412 | 94.637 |
2 | 1.580751 | 0.137562 | 1.349562 | 94.536 | ||
3 | 1.574792 | 0.148773 | 1.422282 | 94.233 | ||
(30, 10) | 1 | 1.607011 | 0.140592 | 1.298961 | 93.930 | |
2 | 1.602062 | 0.138471 | 1.314616 | 93.930 | ||
3 | 1.595093 | 0.133522 | 1.297446 | 94.334 | ||
(45, 5) | 1 | 1.554592 | 0.092213 | 1.132311 | 95.344 | |
2 | 1.554491 | 0.094132 | 1.140391 | 95.344 | ||
3 | 1.554794 | 0.107464 | 1.221292 | 95.445 | ||
(45, 15) | 1 | 1.576913 | 0.100798 | 1.061409 | 93.627 | |
2 | 1.572772 | 0.101101 | 1.076761 | 93.425 | ||
3 | 1.564894 | 0.093021 | 1.060096 | 93.829 | ||
(60, 10) | 1 | 1.570853 | 0.072013 | 0.935563 | 94.435 | |
2 | 1.571964 | 0.073932 | 0.947077 | 94.233 | ||
3 | 1.572671 | 0.081911 | 1.001112 | 94.132 | ||
(60, 20) | 1 | 1.556511 | 0.059893 | 0.915969 | 95.142 | |
2 | 1.554592 | 0.061812 | 0.930311 | 94.839 | ||
3 | 1.554693 | 0.063024 | 0.917383 | 94.132 | ||
(3.0, 2.0) | (30, 5) | 1 | 3.197661 | 0.563581 | 2.665996 | 94.031 |
2 | 3.198670 | 0.578730 | 2.696296 | 94.031 | ||
3 | 3.199682 | 0.653472 | 2.844261 | 93.627 | ||
(30, 10) | 1 | 3.173421 | 0.534290 | 2.593781 | 95.041 | |
2 | 3.165340 | 0.528233 | 2.627616 | 95.041 | ||
3 | 3.150191 | 0.469651 | 2.595397 | 94.839 | ||
(45, 5) | 1 | 3.125950 | 0.402990 | 2.266036 | 94.738 | |
2 | 3.126963 | 0.409051 | 2.281691 | 94.536 | ||
3 | 3.133024 | 0.469654 | 2.438847 | 94.435 | ||
(45, 15) | 1 | 3.121911 | 0.319163 | 2.119687 | 95.849 | |
2 | 3.114840 | 0.322190 | 2.150896 | 95.445 | ||
3 | 3.104742 | 0.305021 | 2.121404 | 95.748 | ||
(60, 10) | 1 | 3.142114 | 0.291893 | 1.872136 | 94.334 | |
2 | 3.144132 | 0.299972 | 1.895366 | 94.233 | ||
3 | 3.144132 | 0.329260 | 2.004143 | 94.132 | ||
(60, 20) | 1 | 3.119893 | 0.238361 | 1.832342 | 94.738 | |
2 | 3.116860 | 0.246443 | 1.860319 | 94.738 | ||
3 | 3.111814 | 0.244420 | 1.832746 | 94.536 |
() | () | Scheme | Estimate | MSE | Approximate | Coverage Percentages |
---|---|---|---|---|---|---|
(1.5, 0.5) | (30, 5) | 1 | 0.505841 | 0.043341 | 0.427012 | 95.583 |
2 | 0.505841 | 0.044023 | 0.431861 | 95.481 | ||
3 | 0.503933 | 0.047607 | 0.455134 | 95.175 | ||
(30, 10) | 1 | 0.514244 | 0.044989 | 0.415668 | 94.869 | |
2 | 0.512662 | 0.044311 | 0.420677 | 94.869 | ||
3 | 0.510434 | 0.042727 | 0.415183 | 95.277 | ||
(45, 5) | 1 | 0.497469 | 0.029508 | 0.362341 | 96.297 | |
2 | 0.497437 | 0.030122 | 0.364925 | 96.297 | ||
3 | 0.497534 | 0.034388 | 0.390813 | 96.399 | ||
(45, 15) | 1 | 0.504612 | 0.032255 | 0.339651 | 94.563 | |
2 | 0.503287 | 0.032352 | 0.344564 | 94.359 | ||
3 | 0.500766 | 0.029767 | 0.339231 | 94.767 | ||
(60, 10) | 1 | 0.502673 | 0.023044 | 0.299382 | 95.379 | |
2 | 0.503028 | 0.023658 | 0.303065 | 95.175 | ||
3 | 0.503255 | 0.026212 | 0.320356 | 95.073 | ||
(60, 20) | 1 | 0.498084 | 0.019166 | 0.293112 | 96.093 | |
2 | 0.497469 | 0.019781 | 0.297701 | 95.787 | ||
3 | 0.497502 | 0.020168 | 0.293563 | 95.073 | ||
(3.0, 2.0) | (30, 5) | 1 | 2.766314 | 0.237022 | 2.335221 | 95.583 |
2 | 2.766314 | 0.240734 | 2.361734 | 95.481 | ||
3 | 2.755886 | 0.260353 | 2.488994 | 95.175 | ||
(30, 10) | 1 | 2.812269 | 0.246036 | 2.273182 | 94.869 | |
2 | 2.803609 | 0.242324 | 2.300578 | 94.869 | ||
3 | 2.791413 | 0.233664 | 2.270531 | 95.277 | ||
(45, 5) | 1 | 2.720536 | 0.161373 | 1.981544 | 96.297 | |
2 | 2.720359 | 0.164731 | 1.995684 | 96.297 | ||
3 | 2.720890 | 0.188062 | 2.137261 | 96.399 | ||
(45, 15) | 1 | 2.759598 | 0.176397 | 1.857466 | 94.563 | |
2 | 2.752351 | 0.176927 | 1.884332 | 94.359 | ||
3 | 2.738565 | 0.162787 | 1.855168 | 94.767 | ||
(60, 10) | 1 | 2.748993 | 0.126023 | 1.637235 | 95.379 | |
2 | 2.750937 | 0.129381 | 1.657385 | 95.175 | ||
3 | 2.752174 | 0.143344 | 1.751946 | 95.073 | ||
(60, 20) | 1 | 2.723894 | 0.104813 | 1.602946 | 96.093 | |
2 | 2.720536 | 0.108171 | 1.628044 | 95.787 | ||
3 | 2.720713 | 0.110292 | 1.605420 | 95.073 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrahili, M.; Alotaibi, N.; Kumar, D.; Alyami, S.A. Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring. Mathematics 2020, 8, 1997. https://doi.org/10.3390/math8111997
Shrahili M, Alotaibi N, Kumar D, Alyami SA. Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring. Mathematics. 2020; 8(11):1997. https://doi.org/10.3390/math8111997
Chicago/Turabian StyleShrahili, Mansour, Naif Alotaibi, Devendra Kumar, and Salem A. Alyami. 2020. "Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring" Mathematics 8, no. 11: 1997. https://doi.org/10.3390/math8111997
APA StyleShrahili, M., Alotaibi, N., Kumar, D., & Alyami, S. A. (2020). Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring. Mathematics, 8(11), 1997. https://doi.org/10.3390/math8111997