Approximation by Generalized Lupaş Operators Based on q-Integers
Abstract
:1. Introduction
- (ρ1)
- be a continuously differentiable function on
- (ρ2)
- and
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (iv)
- (v)
- (i)
- (ii)
- (iii)
- (iv)
- Now by using and shifting l to we haveNow, let us calculate the values of , and CAlso,On adding , and C we have,
- (v)
- Now, by using and shifting l to we haveNow, let us calculate the values of , and GSimilarly,Also,On adding , and G we have,
- (i)
- (ii)
- (iii)
- (iv)
2. Weighted Approximation
3. Rate of Convergence or Order of Approximation
- (i)
- (ii)
- , for
- (iii)
4. Voronovskaya-Type Theorem
5. Local Approximation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernstein, S.N. Démonstation du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 1912, 13, 1–2. [Google Scholar]
- Weierstrass, K. Über die Analytische Darstellbarkeit Sogenannter Willkürlicher Functionen Einer Reellen Veränderlichen; Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin: Berlin, Gemany, 1885; pp. 633–639, 789–805. [Google Scholar]
- Korovkin, P.P. On convergence of linear operators in the space of continuous functions (Russian). Dokl. Akad. Nauk SSSR (N.S.) 1953, 90, 961–964. [Google Scholar]
- Lorentz, G.G. Bernstein Polynomials; University of Toronto Press: Toronto, ON, Canada, 1953. [Google Scholar]
- Cárdenas-Morales, D.; Garrancho, P.; Rasa, I. Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 2011, 62, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Aral, A.; Inoan, D.; Rasa, I. On the generalized Szász-Mirakyan operators. Results Math. 2014, 65, 441–452. [Google Scholar] [CrossRef]
- İlarslan, H.G.I.; Aral, A.; Başcanbaz-Tunca, G. Generalized Lupaş operators. AIP Conf. Proc. 2018, 1926, 020019. [Google Scholar]
- Lupaş, A. The approximation by some positive linear operators. In Approximation Theory, Proceedings of the International Dortmund Meeting, IDoMAT 95, Witten, Germany, 13–17 March 1995; Müller, M.W., Felten, M., Mache, D.H., Eds.; Akademie Verlag: Berlin, Germany, 1995; pp. 201–229. [Google Scholar]
- Gadzhiev, A.D. A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR 1974, 218, 1001–1004. (In Russian) [Google Scholar]
- Gadjiev, A.D. Theorems of the type of P. P. Korovkin’s theorems. Math. Zamet 1976, 20, 781–786. [Google Scholar]
- Holhoş, A. Quantitative estimates for positive linear operators in weighted spaces. Gen. Math. 2008, 16, 99–110. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Lupaş, A. A q-analogue of the Bernstein operator. In Seminar on Numerical and Statistical Calculus; University of Cluj-Napoca: Cluj-Napoca, Rominia, 1987; Volume 9, pp. 85–92. [Google Scholar]
- Phillips, G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997, 4, 511–518. [Google Scholar]
- Khan, K.; Lobiyal, D.K. Bézier curves based on Lupaş (p,q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017, 317, 458–477. [Google Scholar] [CrossRef]
- Khan, K.; Lobiyal, D.K.; Kilicman, A. A de Casteljau Algorithm for Bernstein type Polynomials based on (p,q)-integers. Appl. Appl. Math. 2018, 13, 997–1017. [Google Scholar]
- Khan, K.; Lobiyal, D.K.; Kilicman, A. Bézier curves and surfaces based on modified Bernstein polynomials. Azerbaijan J. Math. 2019, 9, 3–21. [Google Scholar]
- Aral, A.; Dǒgru, O. Bleimann-Butzer and Hahn operators based on q-integers. J. Inequalities Appl. 2008, 2007, 079410. [Google Scholar] [CrossRef] [Green Version]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Derriennic, M.M. Modified Bernstein polynomials and Jacobi polynomials in q-calculus. Rend. Circ. Mat. Palermo Ser. II 2005, 76, 269–290. [Google Scholar]
- Mahmudov, N.I. Approximation by the q-Szász-Mirakjan Operators. Abstr. Appl. Anal. 2012, 2012, 754217. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.N.; Patel, P. On generalized integral Bernstein operators based on q-integers. Appl. Math. Comput. 2014, 242, 931–944. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ahasan, M. The Dunkl generalization of Stancu type q-Szász-Mirakjan-Kantrovich operators and some approximation results. Carpathian J. Math. 2018, 34, 363–370. [Google Scholar]
- Shang, Y. Subspace confinement for switched linear systems. Forum Math. 2017, 29, 693–699. [Google Scholar] [CrossRef]
- Wang, N.; Egerstedt, M.; Martin, C. Stability of switched linear systems and the convergence of random products. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–18 December 2009; pp. 3721–3726. [Google Scholar]
- DeVore, R.A.; Lorentz, G.G. Constructive Approximation, Grundlehren Math. Wiss. In Fundamental Principales of Mathematical Sciences; Springer: Berlin, Germany, 1993. [Google Scholar]
- Gadzhiev, A.D.; Aral, A. The estimates of approximation by using a new type of weighted modulus of continuity. Comput. Math. Appl. 2007, 54, 127–135. [Google Scholar]
- Agratini, O. On the rate of convergence of a positive approximation process. Nihonkai Math. J. 2000, 11, 47–56. [Google Scholar]
- Lenze, B. On Lipschitz type maximal functions and their smoothness spaces. Indag. Math. 1988, 91, 53–63. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qasim, M.; Mursaleen, M.; Khan, A.; Abbas, Z. Approximation by Generalized Lupaş Operators Based on q-Integers. Mathematics 2020, 8, 68. https://doi.org/10.3390/math8010068
Qasim M, Mursaleen M, Khan A, Abbas Z. Approximation by Generalized Lupaş Operators Based on q-Integers. Mathematics. 2020; 8(1):68. https://doi.org/10.3390/math8010068
Chicago/Turabian StyleQasim, Mohd, M. Mursaleen, Asif Khan, and Zaheer Abbas. 2020. "Approximation by Generalized Lupaş Operators Based on q-Integers" Mathematics 8, no. 1: 68. https://doi.org/10.3390/math8010068
APA StyleQasim, M., Mursaleen, M., Khan, A., & Abbas, Z. (2020). Approximation by Generalized Lupaş Operators Based on q-Integers. Mathematics, 8(1), 68. https://doi.org/10.3390/math8010068