New Improvement of the Domain of Parameters for Newton’s Method
Abstract
:1. Introduction
- At least as weak sufficient semi-local and local convergence criteria (leading to more initial points)
- Tighter upper bounds on the distances and (leading to fewer iterations to obtain a predetermine accuracy)
- At least as precise information on the location of the solution.
2. Convergence Analysis
- (a)
- Given and , we considered , then .
- (b)
- Given , then condition equality is fulfilled. If γ is given by , then again , since we have that .
- (c)
- Then, we have thatNote also that the new major sequences are more accurate than the corresponding previous sequences. As an example, the majority sequences , defined by Newton’s method, corresponding to criteria and , are given as:
- (d)
- If for some , then δ can b chosen so that for .
- (e)
- We have that
3. Numerical Examples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kantorovich, L.V.; Akilov, G. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Amat, S.; Busquier, S.; Bermúdez, C.; Magreñán, Á.A. On a two-step relaxed Newton-type method. Appl. Math. Comput. 2013, 219, 11341–11347. [Google Scholar] [CrossRef]
- Amat, S.; Magreñán, Á.A.; Romero, N. On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. 2016, 84, 9–18. [Google Scholar] [CrossRef]
- Argyros, I.K.; González, D.; Magreñán, Á.A. A Semilocal Convergence for a Uniparametric Family of Efficient Secant-Like Methods. J. Funct. Spaces 2014, 2014, 467980. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Application of Newton–Type Iterations; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Numerical Methods in Nonlinear Analysis; World Scientific Publishing: Hackensack, NJ, USA, 2013. [Google Scholar]
- Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s method. J. Complex. 2012, 28, 364–387. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K.; Hilout, S. On an improved convergence analysis of Newton’s method. Appl. Mah. Comput. 2013, 225, 372–386. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magreñán, Á.A. Iterative Methods and Their Dynamics with Applications: A Contemporary Study; CRC Press: Boca Ratón, FL, USA, 2017. [Google Scholar]
- Argyros, I.K.; Magreñán, Á.A.; Orcos, L.; Sarría, Í. Unified local convergence for Newton’s method and uniqueness of the solution of equations under generalized conditions in a Banach space. Mathematics 2019, 7, 463. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K.; Magreñán, Á.A.; Orcos, L.; Sarría, Í. Advances in the semilocal convergence of Newton’s method with real-world applications. Mathematics 2019, 7, 299. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Gutiérrez, J.M.; Magreñán, Á.A.; Torregrosa, J.R. Stability analysis of a parametric family of iterative methods for solving nonlinear models. Appl. Math. Comput. 2016, 285, 26–40. [Google Scholar] [CrossRef]
- Kou, J.; Wang, B. semi-local convergence of a modified multi–point Jarratt method in Banach spaces under general continuity conditions. Numer. Algorithms 2012, 60, 369–390. [Google Scholar]
- Lotfi, T.; Magreñán, Á.A.; Mahdiani, K.; Rainer, J.J. A variant of Steffensen-King’s type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach. Appl. Math. Comput. 2015, 252, 347–353. [Google Scholar] [CrossRef]
- Magreñán, Á.A. Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 2014, 233, 29–38. [Google Scholar]
- Magreñán, Á.A.; Argyros, I.K. A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 2014, 248, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Magreñán, Á.A. On the local convergence and the dynamics of Chebyshev-Halley methods with six and eight order of convergence. J. Comput. Appl. Math. 2016, 298, 236–251. [Google Scholar] [CrossRef]
- Magreñán, Á.A.; Gutiérrez, J.M. Real dynamics for damped Newton’s method applied to cubic polynomials. J. Comput. Appl. Math. 2015, 275, 527–538. [Google Scholar] [CrossRef]
- Ren, H.; Argyros, I.K. Convergence radius of the modified Newton method for multiple zeros under Hölder continuous derivative. Appl. Math. Comput. 2010, 217, 612–621. [Google Scholar] [CrossRef]
- Rheinboldt, W.C. An Adaptive Continuation Process for Solving Systems of Nonlinear Equations; Banach Center Publications, Polish Academy of Science: Warszawa, Poland, 1978; Volume 3, pp. 129–142. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Series in Automatic Computation; Prentice–Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Burrows, A.; Lockwood, M.; Borowczak, M.; Janak, E.; Barber, B. Integrated STEM: Focus on Informal Education and Community Collaboration through Engineering. Edu. Sci. 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Nakakoji, Y.; Wilson, R. First-Year Mathematics and Its Application to Science: Evidence of Transfer of Learning to Physics and Engineering. Edu. Sci. 2018, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Prieto, M.C.; Palma, L.O.; Tobías, P.J.B.; León, F.J.M. Student assessment of the use of Kahoot in the learning process of science and mathematics. Edu. Sci. 2019, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Dejam, M. Advective-diffusive-reactive solute transport due to non-Newtonian fluid flows in a fracture surrounded by a tight porous medium. Int. J. Heat Mass Transf. 2019, 128, 1307–1321. [Google Scholar] [CrossRef]
- Jordán, C.; Magreñán, Á.A.; Orcos, L. Considerations about flip education in the teaching of advanced mathematics. Edu. Sci. 2019, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Kou, Z.; Dejam, M. Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium. Phys. Fluids 2019, 31, 056603. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amorós, C.; Argyros, I.K.; González, D.; Magreñán, Á.A.; Regmi, S.; Sarría, Í. New Improvement of the Domain of Parameters for Newton’s Method. Mathematics 2020, 8, 103. https://doi.org/10.3390/math8010103
Amorós C, Argyros IK, González D, Magreñán ÁA, Regmi S, Sarría Í. New Improvement of the Domain of Parameters for Newton’s Method. Mathematics. 2020; 8(1):103. https://doi.org/10.3390/math8010103
Chicago/Turabian StyleAmorós, Cristina, Ioannis K. Argyros, Daniel González, Ángel Alberto Magreñán, Samundra Regmi, and Íñigo Sarría. 2020. "New Improvement of the Domain of Parameters for Newton’s Method" Mathematics 8, no. 1: 103. https://doi.org/10.3390/math8010103
APA StyleAmorós, C., Argyros, I. K., González, D., Magreñán, Á. A., Regmi, S., & Sarría, Í. (2020). New Improvement of the Domain of Parameters for Newton’s Method. Mathematics, 8(1), 103. https://doi.org/10.3390/math8010103