Set-Valued Interpolative Hardy–Rogers and Set-Valued Reich–Rus–Ćirić-Type Contractions in b-Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (1)
- if and only if ;
- (2)
- for all ;
- (3)
- there exists a real number such that for all .
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur applications aux tequations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calc. Math. Soc. 1968, 60, 71–77. [Google Scholar]
- Chatterjea, S.K. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Ćirić, L. Fixed point theorems for multivalued contractions in complete metric spaces. J. Math. Anal. Appl. 2008, 348, 499–507. [Google Scholar] [CrossRef]
- Meir, A.; Keeler, E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.W.; Wong, J.S. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Park, S. Some general fixed point theorems on topological vector spaces. Appl. Set-Valued Anal. Optim. 2019, 1, 19–28. [Google Scholar]
- Petrusel, A. Local fixed point results for graphic contractions. J. Nonlinear Var. Anal. 2019, 3, 141–1448. [Google Scholar]
- Zaslavski, A.J. Two fixed point results for a class of mappings of contractive type. J. Nonlinear Var. Anal. 2018, 2, 113–119. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Alharbi, N.; Aydi, H.; Felhi, A.; Ozel, C.; Sahmim, S. α-contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 2018, 9, 47–60. [Google Scholar]
- Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integgral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Modell. Control 2017, 22, 17–30. [Google Scholar] [CrossRef]
- Aydi, H.; Chen, C.M.; Karapinar, E. Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance. Mathematics 2019, 7, 84. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Hierro, A.F.R. ω-Interpolative Ćirić-Reich-Rus-type contractions. Mathematics 2019, 7, 57. [Google Scholar] [CrossRef]
- Collaco, P.; Silva, J.C. A complete comparison of 25 contraction conditions. Nonlinear Anal. Theory Methods Appl. 1997, 30, 471–476. [Google Scholar] [CrossRef]
- Ege, O. Complex valued rectangular b-metric spaces and an application to linear equations. J. Nonlinear Sci. Appl. 2015, 8, 1014–1021. [Google Scholar] [CrossRef]
- Jeong, G.S.; Rhoades, B.E. Maps for which F(T) = F(Tn). Fixed Point Theory Appl. 2005, 6, 71–105. [Google Scholar]
- Kamran, T.; Postolache, M.; Ali, M.U.; Kiran, Q. Feng and Liu type F-contraction in b-metric spaces with application to integral equations. J. Math. Anal. 2016, 7, 18–27. [Google Scholar]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Shatanawi, W.; Pitea, A.; Lazović, R. Contraction conditions using comparison functions on b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 135. [Google Scholar] [CrossRef]
- Debnath, P.; Mitrović, Z.; Radenović, S. Interpolative Hardy-Rogers and Reich-Rus-Ćirić type contractions in b-metric spaces and rectangular b-metric spaces. Math. Vesnik. 2019. to appear. [Google Scholar]
- Karapinar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef]
- Karapinar, E.; Alahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef]
- Markin, J.T. A fixed point theorem for set- valued mappings. Bull. Am. Math. Soc. 1968, 74, 639–640. [Google Scholar] [CrossRef]
- Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Kamran, T. Mizoguchi-Takahashi’s type fixed point theorem. Comput. Math. Appl. 2009, 57, 507–511. [Google Scholar] [CrossRef]
- Berinde, M.; Berinde, V. On a general class of multivalued weakly picard mappings. J. Math. Anal. Appl. 2007, 326, 772–782. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debnath, P.; de La Sen, M. Set-Valued Interpolative Hardy–Rogers and Set-Valued Reich–Rus–Ćirić-Type Contractions in b-Metric Spaces. Mathematics 2019, 7, 849. https://doi.org/10.3390/math7090849
Debnath P, de La Sen M. Set-Valued Interpolative Hardy–Rogers and Set-Valued Reich–Rus–Ćirić-Type Contractions in b-Metric Spaces. Mathematics. 2019; 7(9):849. https://doi.org/10.3390/math7090849
Chicago/Turabian StyleDebnath, Pradip, and Manuel de La Sen. 2019. "Set-Valued Interpolative Hardy–Rogers and Set-Valued Reich–Rus–Ćirić-Type Contractions in b-Metric Spaces" Mathematics 7, no. 9: 849. https://doi.org/10.3390/math7090849