Further Improved Weighted Arithmetic-Geometric Operator Mean Inequalities
Abstract
:1. Introduction
- (i)
- ;
- (ii)
- for ;
- (iii)
- is monotone increasing on and monotone decreasing on .
2. Main Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, M. On an operator Kantorovich inequality for positive linear maps. J. Math. Anal. Appl. 2013, 402, 127–132. [Google Scholar] [CrossRef]
- Lin, M. Squaring a reverse AM-GM inequality. Stud. Math. 2013, 215, 187–194. [Google Scholar] [CrossRef]
- Zhang, P. More operator inequalities for positive linear maps. Banach J. Math. Anal. 2015, 9, 166–172. [Google Scholar] [CrossRef]
- Xue, J. Weighted arithmetic-geometric operator mean inequalities. J. Inequal. Appl. 2018, 2018, 154. [Google Scholar] [CrossRef]
- Yang, C.; Lu, F. Improving some operator inequalities for positive linear maps. Filomat 2018, 32, 4333–4340. [Google Scholar] [CrossRef]
- Zou, L. An arithmetic-geometric mean inequality for singular values and its applications. Linear Algebra Appl. 2017, 528, 25–32. [Google Scholar] [CrossRef]
- Zou, L. Unification of the arithmetic-geometric mean and Hölder inequalities for unitarily invariant norms. Linear Algebra Appl. 2019, 562, 154–162. [Google Scholar] [CrossRef]
- Kittaneh, F.; Krnić, M. Refined Heinz operator inequalities. Linear Multilinear Algebra 2013, 61, 1148–1157. [Google Scholar] [CrossRef]
- Gümüs, I.H.; Moradi, H.R.; Sababheh, M. More accurate operator means inequalities. J. Math. Anal. Appl. 2018, 465, 267–280. [Google Scholar] [CrossRef]
- Bhatia, R.; Kittaneh, F. Notes on matrix arithmetic-geometric mean inequalities. Linear Algebra Appl. 2000, 308, 203–211. [Google Scholar] [CrossRef]
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Ando, T.; Zhan, X. Norm inequalities related to operator monotone functions. Math. Ann. 1999, 315, 771–780. [Google Scholar] [CrossRef]
- Zuo, H.; Shi, G.; Fujii, M. Refined Young inequality with Kantorovich constant. J. Math. Inequal. 2011, 5, 551–556. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Hu, X. Further Improved Weighted Arithmetic-Geometric Operator Mean Inequalities. Mathematics 2019, 7, 823. https://doi.org/10.3390/math7090823
Xue J, Hu X. Further Improved Weighted Arithmetic-Geometric Operator Mean Inequalities. Mathematics. 2019; 7(9):823. https://doi.org/10.3390/math7090823
Chicago/Turabian StyleXue, Jianming, and Xingkai Hu. 2019. "Further Improved Weighted Arithmetic-Geometric Operator Mean Inequalities" Mathematics 7, no. 9: 823. https://doi.org/10.3390/math7090823
APA StyleXue, J., & Hu, X. (2019). Further Improved Weighted Arithmetic-Geometric Operator Mean Inequalities. Mathematics, 7(9), 823. https://doi.org/10.3390/math7090823