Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip
Abstract
1. Introduction
2. Problem Formulation of Long and Circular Sliders
3. Homotopic Solution Procedure
Initial Order Deformation Problem
4. Convergence Criteria
5. Results and Discussion
6. Conclusions
- Slip near the ground reduces lateral velocity of the slider much more than slip. By increasing the magnetic parameter, the lateral velocity components decrease further.
- The behavior of velocity profiles is similar for the long and the circular sliders in cases of no-slip (i.e., parabolic or linear for a low Reynolds number).
- In cases of a large Reynolds number, a boundary layer formed near the surface, while velocity profiles decreased with an increase in slip parameters, a decrease which grew more pronounced after applying the magnetic field.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Magnetic field | Dynamic viscosity | ||
Width | Similarity variable | ||
Slip coefficient | Extra stress tensor | ||
Identity tensor | Slip factors | ||
Length | Velocity function | ||
Pressure | Velocity components | ||
Constant viscosity | Fluid density | ||
Space coordinates |
References
- Skalak, F.; Wang, C.-Y. Fluid Dynamics of a Long Porous Slider. J. Appl. Mech. 1975, 42, 893–894. [Google Scholar] [CrossRef]
- Wang, C.-Y. Erratum: “Fluid Dynamics of the Circular Porous Slider.” J. Appl. Mech. 1974, 41, 343–347. J. Appl. Mech. 1978, 45, 236. [Google Scholar] [CrossRef]
- Wang, C.-Y. The Elliptic Porous Slider at Low Crossflow Reynolds Numbers. J. Lubr. Technol. 1978, 100, 444. [Google Scholar] [CrossRef]
- Bhattacharjee, R.C.; Das, N.C. Porous slider bearing lubricated with couple stress mhd fluids. Trans. Can. Soc. Mech. Eng. 1994, 18, 317–331. [Google Scholar] [CrossRef]
- Patel, J.R.; Deheri, G. A study of thin film lubrication at nanoscale for a ferrofluid based infinitely long rough porous slider bearing. Facta Univ. Ser. Mech. Eng. 2016, 14, 89–99. [Google Scholar] [CrossRef]
- Sinha, P.; Adamu, G. Analysis of Thermal Effects in a Long Porous Rough Slider Bearing. Proc. Natl. Acad. Sci. India Sectoin A Phys. Sci. 2017, 87, 279–290. [Google Scholar] [CrossRef]
- Munshi, M.M.; Patel, A.R.; Deheri, G. Analysis of Rough Porous Inclined Slider Bearing Lubricated with a Ferrofluid Considering Slip Velocity. Int. J. Res. Advent Technol. 2019, 7, 387–396. [Google Scholar]
- Lang, J.; Nathan, R.; Wu, Q. Theoretical and experimental study of transient squeezing flow in a highly porous film. Tribol. Int. 2019, 135, 259–268. [Google Scholar] [CrossRef]
- Madalli, V.S.; Bujurke, N.M.; Mulimani, B.G. Lubrication of a long porous slider. Tribol. Int. 1995, 28, 225–232. [Google Scholar] [CrossRef]
- Awati, V.B.; Jyoti, M. Homotopy analysis method for the solution of lubrication of a long porous slider. Appl. Math. Nonlinear Sci. 2016, 1, 507–516. [Google Scholar] [CrossRef]
- Khan, Y.; Faraz, N.; Yildirim, A.; Wu, Q. A Series Solution of the Long Porous Slider. Tribol. Trans. 2011, 54, 187–191. [Google Scholar] [CrossRef]
- Khan, Y.; Wu, Q.; Faraz, N.; Mohyud-Dind, S.T.; Yıldırım, A. Three-Dimensional Flow Arising in the Long Porous Slider: An Analytic Solution. Z. Nat. A 2011, 66, 507–511. [Google Scholar]
- Faraz, N.; Khan, Y.; Lu, D.C.; Goodarzi, M. Integral transform method to solve the problem of porous slider without velocity slip. Symmetry 2019, 11, 791. [Google Scholar] [CrossRef]
- Ghoreishi, M.; Ismail, A.I.B.M.; Rashid, A. The One Step Optimal Homotopy Analysis Method to Circular Porous Slider. Math. Probl. Eng. 2012, 2012, 135472. [Google Scholar] [CrossRef]
- Shukla, S.D.; Deheri, G.M. Rough porous circular convex pad slider bearing lubricated with a magnetic fluid. In Lecture Notes in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wang, C.Y. A porous slider with velocity slip. Fluid Dyn. Res. 2012, 44, 065505. [Google Scholar] [CrossRef]
- Wang, C.-Y. Fluid Dynamics of the Circular Porous Slider. J. Appl. Mech. 1974, 41, 343. [Google Scholar] [CrossRef]
- Faraz, N. Study of the effects of the Reynolds number on circular porous slider via variational iteration algorithm-II. Comput. Math. Appl. 2011, 61, 1991–1994. [Google Scholar] [CrossRef]
- Madani, M.; Khan, Y.; Mahmodi, G.; Faraz, N.; Yildirim, A.; Nasernejad, B. Application of homotopy perturbation and numerical methods to the circular porous slider. Int. J. Numer. Methods Heat Fluid Flow 2012, 22, 705–717. [Google Scholar] [CrossRef]
- Naeem, F.; Yasir, K. Thin film flow of an unsteady Maxwell fluid over a shrinking/stretching sheet with variable fluid properties. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 1596–1612. [Google Scholar]
R | |||||
---|---|---|---|---|---|
0, 0 | 0 | 0.2 | 62.33 | 0.896 | 0.932 |
- | - | 0.5 | 26.34 | 0.760 | 0.836 |
- | - | 2.0 | 8.412 | 0.334 | 0.467 |
- | - | 5.0 | 4.917 | 0.063 | 0.123 |
- | - | 20 | 3.267 | 0 | 0 |
- | - | 50 | 2.909 | 0 | 0 |
0.1, 0.1 | 2 | 0.2 | 39.27 | 0.743 | 0.780 |
- | 4 | 0.5 | 16.78 | 0.626 | 0.704 |
- | 6 | 2.0 | 6.596 | 0.4372 | 0.2536 |
- | 10 | 5.0 | 3.436 | 0.3245 | 0 |
20 | 20.0 | 2.440 | 0.1520 | 0 | |
50 | 50.0 | 2.240 | 0 | 0 | |
0.1, 1 | 2 | 0.2 | 20.31 | 0.424 | 0.463 |
- | 4 | 0.5 | 8.859 | 0.357 | 0.436 |
- | 6 | 2.0 | 3.159 | 0.160 | 0.321 |
- | 10 | 5.0 | 2.050 | 0.035 | 0.123 |
20 | 20.0 | 1.513 | 0 | 0.0632 | |
50 | 50.0 | 1.391 | 0 | 0.012 | |
0.1, 10 | 2 | 0.2 | 5.316 | 0.064 | 0.082 |
- | 4 | 0.5 | 2.702 | 0.046 | 0.080 |
- | 6 | 2.0 | 1.413 | 0.013 | 0 |
- | 10 | 5.0 | 1.175 | 0.002 | 0 |
20 | 20.0 | 1.068 | 0 | 0 | |
50 | 50.0 | 1.047 | 0 | 0 | |
1, 1 | 2 | 0.2 | 9.727 | 0.275 | 0.315 |
- | 4 | 0.5 | 4.591 | 0.210 | 0.288 |
- | 6 | 2.0 | 2.048 | 0.068 | 0.172 |
10 | 5.0 | 1.569 | 0.011 | 0.047 | |
20 | 20.0 | 1.355 | 0 | 0 | |
50 | 50.0 | 1.315 | 0 | 0 |
R | ||||
---|---|---|---|---|
0, 0 | 0 | 0.2 | 30.78 | 0.914 |
- | - | 0.5 | 12.79 | 0.797 |
- | - | 2.0 | 3.833 | 0.392 |
- | - | 5.0 | 2.019 | 0.085 |
- | - | 20 | 1.349 | 0 |
- | - | 50 | 1.194 | 0 |
0.1, 0.1 | 2 | 0.2 | 19.33 | 0.761 |
- | 4 | 0.5 | 8.089 | 0.663 |
- | 6 | 2.0 | 2.503 | 0.310 |
- | 10 | 5.0 | 1.445 | 0.1014 |
20 | 20.0 | 0.994 | 0 | |
50 | 50.0 | 0.908 | 0 | |
0.1, 1 | 2 | 0.2 | 9.853 | 0.441 |
- | 4 | 0.5 | 4.130 | 0.394 |
- | 6 | 2.0 | 1.288 | 0.129 |
- | 10 | 5.0 | 0.752 | 0.0145 |
20 | 20.0 | 0.529 | 0 | |
50 | 50.0 | 0.483 | 0 | |
0.1, 10 | 2 | 0.2 | 6.438 | 0.084 |
- | 4 | 0.5 | 2.699 | 0.076 |
- | 6 | 2.0 | 0.841 | 0.015 |
- | 10 | 5.0 | 0.488 | 0 |
20 | 20.0 | 0.338 | 0 | |
50 | 50.0 | 0.305 | 0 | |
1, 1 | 2 | 0.2 | 4.611 | 0.294 |
- | 4 | 0.5 | 2.043 | 0.244 |
- | 6 | 2.0 | 0.776 | 0.0215 |
10 | 5.0 | 0.549 | 0 | |
20 | 20.0 | 0.466 | 0 | |
50 | 50.0 | 0.453 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraz, N.; Khan, Y.; Anjum, A.; Kahshan, M. Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip. Mathematics 2019, 7, 748. https://doi.org/10.3390/math7080748
Faraz N, Khan Y, Anjum A, Kahshan M. Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip. Mathematics. 2019; 7(8):748. https://doi.org/10.3390/math7080748
Chicago/Turabian StyleFaraz, Naeem, Yasir Khan, Amna Anjum, and Muhammad Kahshan. 2019. "Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip" Mathematics 7, no. 8: 748. https://doi.org/10.3390/math7080748
APA StyleFaraz, N., Khan, Y., Anjum, A., & Kahshan, M. (2019). Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip. Mathematics, 7(8), 748. https://doi.org/10.3390/math7080748