Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap
Abstract
1. Introduction
2. Firoozbakht, Nicholson, and Farhadian
3. Sufficient Condition for the Nicholson and Firoozbakht Conjectures
4. Verifying the Firoozbakht and Nicholson Conjectures for All Primes p < 264
5. Sufficient Conditions for the Farhadian Conjecture
6. Verifying the Farhadian Conjecture for All Primes p < 264
7. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Ribenboim, P. The Little Book of Big Primes; Springer: New York, NY, USA, 1991. [Google Scholar]
- Ribenboim, P. The New Book of Prime Number Records; Springer: New York, NY, USA, 1996. [Google Scholar]
- Ribenboim, P. The Little Book of Bigger Primes; Springer: New York, NY, USA, 2004. [Google Scholar]
- Wells, D. Prime Numbers: The Most Mysterious Figures in Math; John Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Cramér, H. Some theorems concerning prime numbers. Ark. Mat. Astron. Phys. 1920, 15, 5. [Google Scholar]
- Cramér, H. On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 1936, 2, 23–46. [Google Scholar] [CrossRef]
- Goldston, D.A. On a result of Littlewood concerning prime numbers. Acta Arith. 1982, 3, 263–271. [Google Scholar] [CrossRef]
- Rosser, J.B. The n’th Prime is Greater than n ln n. Proc. Lond. Math. Soc. 1938, 45, 21–44. [Google Scholar]
- Rosser, J.B. Explicit Bounds for some functions of prime numbers. Am. J. Math. 1941, 63, 211–232. [Google Scholar] [CrossRef]
- Cesàro, E. Sur une formule empirique de M. Pervouchine. Comptes Rendus 1894, 119, 848–849. [Google Scholar]
- Cipolla, M. La determinazione assintotica dell’nimo numero primo. Mat. Napoli 1902, 3, 132–166. [Google Scholar]
- Rosser, J.B.; Schoenfeld, L. Approximate Formulas for Some Functions of Prime Numbers. Ill. J. Math. 1962, 6, 64–97. [Google Scholar] [CrossRef]
- Sándor, J. On certain sequences and series with applications in prime number theory. Gaz. Mat. Met. Inf. 1985, 6, 1–2. [Google Scholar]
- Dusart, P. The kth prime is greater than k(ln k + ln ln k − 1) for k ≥ 2. Math. Comput. 1999, 68, 411–415. [Google Scholar] [CrossRef]
- Lowry-Duda, D. A Short Note on Gaps between Powers of Consecutive Primes. arXiv 2017, arXiv:1709.07847. [Google Scholar]
- Dusart, P. Estimates of some functions over primes without RH. arXiv 2010, arXiv:1002.0442. [Google Scholar]
- Trudgian, T. Updating the error term in the prime number theorem. Ramanujan J. 2016, 39, 225. [Google Scholar] [CrossRef]
- Dusart, P. Explicit estimates of some functions over primes. Ramanujan J. 2018, 45, 227. [Google Scholar] [CrossRef]
- Axler, C. New estimates for some functions defined over primes. arXiv 2017, arXiv:1703.08032. [Google Scholar]
- Visser, M. Primes and the Lambert W function. Mathematics 2018, 6, 56. [Google Scholar] [CrossRef]
- Andrica, D. Note on a conjecture in prime number theory. Studia Univ. Babes–Bolyai Math. 1986, 31, 44–48. [Google Scholar]
- Visser, M. Variants on Andrica’s conjecture with and without the Riemann hypothesis. Mathematics 2018, 6, 289. [Google Scholar] [CrossRef]
- Visser, M. Strong version of Andrica’s conjecture. arXiv 2018, arXiv:1812.02762. [Google Scholar]
- Farideh Firoozbakht. Unpublished. 1982. Available online: https://www.primepuzzles.net/thepuzzlers/Firoozbakht.htm (accessed on 30 July 2019).
- Rivera, C. (Ed.) Conjecture 30. The Firoozbakht Conjecture. 2002. Available online: https://www.primepuzzles.net/conjectures/conj_030.htm (accessed on 30 July 2019).
- Kourbatov, A. Verification of the Firoozbakht conjecture for primes up to four quintillion. Int. Math. Forum 2015, 10, 283–288. [Google Scholar] [CrossRef][Green Version]
- Kourbatov, A. Upper bounds for prime gaps related to Firoozbakht’s conjecture. J. Integer Seq. 2015, 18, 15.11.2. [Google Scholar]
- Kourbatov, A. Prime Gaps: Firoozbakht Conjecture. Updated March 2019. Available online: http://www.javascripter.net/math/primes/firoozbakhtconjecture.htm (accessed on 30 July 2019).
- Nicely, T.R. First Occurrence Prime Gaps. Updated March 2019. Available online: http://www.trnicely.net/gaps/gaplist.html (accessed on 30 July 2019).
- Nicely, T.R.; Nyman, B. New prime gaps between 1015 and 5 × 1016. J. Integer Seq. 2003, 6, 03.3.1. [Google Scholar]
- Oliveira e Silva, T.; Herzog, S.; Pardi, S. Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4 × 1018. Math. Comp. 2014, 83, 2033–2060. [Google Scholar] [CrossRef]
- For All of the Maximal Prime Gaps up to (80, , , ). Available online: https://en.wikipedia.org/wiki/Prime_gap (accessed on 30 July 2019).
- For All of the Maximal Prime Gaps up to (80, , , ). Available online: http://trnicely.net/#Maximal (accessed on 30 July 2019).
- For All of the Maximal Prime Gaps up to (75, , ). Available online: http://primerecords.dk/primegaps/maximal.htm (accessed on 30 July 2019).
- For All of the Maximal Prime Gaps up to (75, , ). Available online: https://primes.utm.edu/notes/GapsTable.html (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A005250 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A005250 (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A002386 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A002386 (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A005669 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A005669 (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A000101 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A000101 (accessed on 30 July 2019).
- Sloane, N.J.A. Sequence A107578 in The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A107578 (accessed on 30 July 2019).
- Nicholson, J.; See Sloane, N.J.A. Sequence A182514 in The On-Line Encyclopedia of Integer Sequences. Unpublished. 2013. Available online: https://oeis.org/A182514 (accessed on 30 July 2019).
- Farhadian, R. A New Conjecture on the Primes. Available online: https://www.primepuzzles.net/conjectures/Reza%20Faradian%20Conjecture.pdf (accessed on 30 July 2019).
- Farhadian, R.; Jakimczuk, R. On a new conjecture of prime numbers. Int. Math. Forum 2017, 12, 559–564. [Google Scholar] [CrossRef]
- Walisch, K. Primecount: A Program for Computing π(x). Available online: https://github.com/kimwalisch/primecount (accessed on 30 July 2019).
- Deleglise, M.; Rivat, J. Computing π(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Math. Comp. 1996, 65, 235–245. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Miller, V.S.; Odlyzko, A.M. Computing π(x): The Meissel–Lehmer Method. Math. Comput. 1985, 44, 537–560. [Google Scholar] [CrossRef]
- Oliveira e Silva, T. Computing π(x): The combinatorial method. Rev. DETUA 2006, 4, 759–768. [Google Scholar]
- Skewes, S. On the Difference π(x) − li(x). J. Lond. Math. Soc. 1933, 8, 277–283. [Google Scholar] [CrossRef]
- Skewes, S. On the Difference π(x) − li(x). II. Proc. Lond. Math. Soc. 1955, 5, 48–70. [Google Scholar] [CrossRef]
- Lehman, R.S. On the Difference π(x) − li(x). Acta Arith. 1966, 11, 397–410. [Google Scholar] [CrossRef][Green Version]
- Te Riele, H.J.J. On the Sign of the Difference π(x) − li(x). Math. Comput. 1987, 48, 323–328. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visser, M. Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap. Mathematics 2019, 7, 691. https://doi.org/10.3390/math7080691
Visser M. Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap. Mathematics. 2019; 7(8):691. https://doi.org/10.3390/math7080691
Chicago/Turabian StyleVisser, Matt. 2019. "Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap" Mathematics 7, no. 8: 691. https://doi.org/10.3390/math7080691
APA StyleVisser, M. (2019). Verifying the Firoozbakht, Nicholson, and Farhadian Conjectures up to the 81st Maximal Prime Gap. Mathematics, 7(8), 691. https://doi.org/10.3390/math7080691