Some New Inequalities for Dual Continuous g-Frames
Abstract
:1. Introduction
2. Preliminaries
- (i)
- The mapping is measurable for all .
- (ii)
- The constants so that
- (i)
- For fixed , is strongly measurable,
- (ii)
- The constants such that
3. Some New Inequalities for Canonical Dual c-g-Frames
4. Some New Inequalities for Alternate Dual c-g-Frames
- (i)
- For and ,
- (ii)
- If , we have
Author Contributions
Funding
Conflicts of Interest
References
- Duffin, R.J.; Schaeffer, A.C. A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 1952, 72, 341–366. [Google Scholar]
- Daubechies, I.; Grossmann, A.; Meyer, Y. Painess nonorthogonal expansion. J. Math. Phys. 1986, 27, 1271–1283. [Google Scholar]
- Casazza, P.G. The art of frame theory. Taiwan. J. Math. 2000, 4, 129–201. [Google Scholar]
- Christensen, O. An Introduction to Frame and Riesz Base; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Strohmer, T.; Heath, R.W. Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 2003, 14, 257–275. [Google Scholar] [Green Version]
- Han, D.; Sun, W. Reconstruction of signals from frame coefficients with erasures at unknown locations. IEEE Trans. Inf. Theory 2014, 60, 4013–4025. [Google Scholar]
- Ali, S.T.; Antoine, J.P.; Gazeau, J.P. Continuous frames in Hilbert spaces. Ann. Phys. 1993, 222, 1–37. [Google Scholar] [CrossRef]
- Gabardo, J.P.; Han, D.G. Frames associated with measurable spaces. Adv. Comput. Math. 2003, 18, 127–147. [Google Scholar]
- Rahimi, A.; Najati, A.; Dehghan, Y.N. Continuous frame in Hilbert space. Methods Funct. Anal. Topol. 2006, 12, 170–182. [Google Scholar]
- Sun, W.C. G-frames and g-Riesz bases. J. Math. Anal. Appl. 2006, 322, 437–452. [Google Scholar] [Green Version]
- Casazza, P.G.; Kutyniok, G. Frame of subspace. Contemp. Math. 2004, 345, 87–114. [Google Scholar]
- Li, S.; Ogawa, H. Pseudo-frames for subspaces with applications. J. Fourier Anal. Appl. 2004, 10, 409–431. [Google Scholar]
- Abdollahpour, M.R.; Faroughi, M.H. Continuous G-Frames in Hilbert Spaces. Southeast Asian Bull. Math. 2008, 32, 1–19. [Google Scholar]
- Balan, R.; Casazza, P.G.; Edidin, D.; Kutyniok, G. A new identity for Parsevel frames. Proc. Am. Math. Soc. 2007, 135, 1007–1015. [Google Scholar]
- Poria, A. Some identities and inequalities for Hilbert-Schmidt frames. Mediterr. J. Math. 2017, 14, 59. [Google Scholar]
- Li, D.W.; Leng, J.S. On some new inequalities for continuous fusion frames in Hilbert spaces. Mediterr. J. Math. 2018, 15, 173. [Google Scholar]
- Zhang, W.; Li, Y.Z. New inequalities and erasures for continuous g-frames. Math. Rep. 2018, 20, 263–278. [Google Scholar]
- Xiao, X.; Zeng, X. Some equalities and inequalities of g-continuous frames. Sci. China Math. 2010, 53, 2621–2632. [Google Scholar] [Green Version]
- Li, J.; Zhu, Y. Some equalities and inequalities for g-Bessel sequences in Hilbert spaces. Appl. Math. Lett. 2012, 25, 1601–1607. [Google Scholar]
- Găvruţa, P. On some identities and inequalities for frames in Hilbert spaces. J. Math. Anal. Appl. 2006, 1, 469–478. [Google Scholar]
- Zhu, X.; Wu, G. A note on some equalities for frames in Hilbert spaces. Appl. Math. Lett. 2010, 23, 788–790. [Google Scholar] [Green Version]
- Moradi, H.R.; Omidvar, M.E.; Gümüş, I.H.; Naseri, R. A note on some inequalities for positive linear maps. Linear Multilinear Algebra 2018, 66, 1449–1460. [Google Scholar]
- Neyshaburi, F.A.; Arefijamaal, A.A. Characterization and construction of K-fusion frames and their duals in Hilbert spaces. Results Math. 2018, 73, 47. [Google Scholar]
- Omidvar, M.E.; Sal Moslehian, M.; Niknam, A. Some numerical radius inequalities for Hilbert space operators. Involv. J. Math. 2009, 2, 471–478. [Google Scholar] [Green Version]
- Neyshaburi, F.A.; Minaei, G.M.; Anjidani, E. On some equalities and inequalities for k-frames. Indian J. Pure Appl. Math. 2019, 50, 297–308. [Google Scholar] [Green Version]
- Xiang, Z.Q. More on Inequalities for Weaving Frames in Hilbert Spaces. Mathematics 2019, 7, 141. [Google Scholar] [Green Version]
- Heil, C. A Basis Theory Primer: Expanded Edition; Birkhäuser: New York, NY, USA, 2010. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Zhang, W. Some New Inequalities for Dual Continuous g-Frames. Mathematics 2019, 7, 662. https://doi.org/10.3390/math7080662
Fu Y, Zhang W. Some New Inequalities for Dual Continuous g-Frames. Mathematics. 2019; 7(8):662. https://doi.org/10.3390/math7080662
Chicago/Turabian StyleFu, Yanling, and Wei Zhang. 2019. "Some New Inequalities for Dual Continuous g-Frames" Mathematics 7, no. 8: 662. https://doi.org/10.3390/math7080662
APA StyleFu, Y., & Zhang, W. (2019). Some New Inequalities for Dual Continuous g-Frames. Mathematics, 7(8), 662. https://doi.org/10.3390/math7080662