Properties of Fluctuating States in Loop Quantum Cosmology
Abstract
:1. Introduction
2. Eigenstates
2.1. Eigenstates of
2.2. Eigenstates of
2.3. Existence of Positive-Energy Solutions with Large Fluctuations
3. Moments
3.1. Relationships between Moments
3.2. Example
Funding
Conflicts of Interest
References
- Bojowald, M. Large scale effective theory for cosmological bounces. Phys. Rev. D 2007, 75, 081301. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. Generalized Hamiltonian dynamics. Can. J. Math. 1950, 2, 129–148. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Loop space representation of quantum general relativity. Nucl. Phys. B 1990, 331, 80–152. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J.; Marolf, D.; Mourão, J.; Thiemann, T. Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 1995, 36, 6456–6493. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Isotropic loop quantum cosmology. Class. Quantum Grav. 2002, 19, 2717–2741. [Google Scholar] [CrossRef] [Green Version]
- Date, G.; Hossain, G.M. Genericity of Big Bounce in isotropic loop quantum cosmology. Phys. Rev. Lett. 2005, 94, 011302. [Google Scholar] [CrossRef]
- Bojowald, M. Non-bouncing solutions in loop quantum cosmology. arXiv 2019, arXiv:1906.02231. [Google Scholar]
- Bojowald, M. The BKL scenario, infrared renormalization, and quantum cosmology. JCAP 2019, 01, 26. [Google Scholar] [CrossRef]
- Bojowald, M. Effective field theory of loop quantum cosmology. Universe 2019, 5, 44. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M.; Lewandowski, J. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 2003, 7, 233–268. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the Big Bang: An analytical and numerical investigation. Phys. Rev. D 2006, 73, 124038. [Google Scholar] [CrossRef]
- Hartle, J.B.; Marolf, D. Comparing formulations of generalized quantum mechanics for reparametrization-invariant systems. Phys. Rev. D 1997, 56, 6247–6257. [Google Scholar] [CrossRef] [Green Version]
- Tsobanjan, A. Semiclassical states on lie algebras. J. Math. Phys. 2015, 56, 033501. [Google Scholar] [CrossRef]
- Bojowald, M. Fluctuation energies in quantum cosmology. Phys. Rev. D 2014, 89, 124031. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojowald, M. Properties of Fluctuating States in Loop Quantum Cosmology. Mathematics 2019, 7, 645. https://doi.org/10.3390/math7070645
Bojowald M. Properties of Fluctuating States in Loop Quantum Cosmology. Mathematics. 2019; 7(7):645. https://doi.org/10.3390/math7070645
Chicago/Turabian StyleBojowald, Martin. 2019. "Properties of Fluctuating States in Loop Quantum Cosmology" Mathematics 7, no. 7: 645. https://doi.org/10.3390/math7070645
APA StyleBojowald, M. (2019). Properties of Fluctuating States in Loop Quantum Cosmology. Mathematics, 7(7), 645. https://doi.org/10.3390/math7070645