New Fixed-Point Theorems on an S-metric Space via Simulation Functions
Abstract
:1. Introduction
2. Preliminaries
- 1.
- if and only if ,
- 2.
- .
- 1.
- for all is an S-metric on X.
- 2.
- in if and only if in .
- 3.
- is Cauchy in if and only if is Cauchy in
- 4.
- is complete if and only if is complete.
3. Main Results
4. An Application to the Fixed-Circle Problem
5. Conclusions
- (1)
- Let be a complete partial S-metric space and be a self-mapping. If T is a -contraction with respect to , does T have a unique fixed point and the Picard sequence converges to the fixed point a? If not, what is (are) the condition(s) that we need to add?
- (2)
- Let be a complete partial S-metric space and be a surjective -expanding map. Does T have a unique fixed point in If not, what is (are) the condition(s) that we need to add?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alghamdi, M.A.; Shahzad, N.; Valero, O. Fixed point theorems in generalized metric spaces with applications to computer science. Fixed Point Theory Appl. 2013, 2013, 118. [Google Scholar] [CrossRef] [Green Version]
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrals. Fundam. Math. 1922, 2, 133–181. (In French) [Google Scholar] [CrossRef]
- Ćirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar]
- Dung, N.V.; Hieu, N.T.; Radojević, S. Fixed point theorems for g-monotone maps on partially ordered S-metric spaces. Filomat 2014, 28, 1885–1898. [Google Scholar]
- Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theory for simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef]
- Chanda, A.; Dey, L.K.; Radenović, S. Simulation functions: A survey of recent results. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 2923–2957. Available online: https://doi.org/10.1007/s13398-018-0580-2 (accessed on 28 May 2019). [CrossRef]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesnik. 2012, 64, 258–266. [Google Scholar]
- Hieu, N.T.; Ly, N.T.; Dung, N.V. A generalization of Ciric quasi-contractions for maps on S-metric spaces. Thai J. Math. 2015, 13, 369–380. [Google Scholar]
- Özgür, N.Y.; Taş, N. Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25). Math. Sci. 2017, 11, 7–16. [Google Scholar] [CrossRef]
- Gupta, A. Cyclic contraction on S-metric space. Int. J. Anal. Appl. 2013, 3, 119–130. [Google Scholar]
- Kumar, M.; Sharma, R. A new approach to the study of fixed point theorems for simulation functions in G-metric spaces. Bol. Soc. Parana. Mat. 2019, 37, 113–119. [Google Scholar]
- Chouhan, P.; Malviya, N. Some fixed point theorems for asymptotically regular sequences and maps. Int. J. Math. Sci. 2013, 33, 1164–1167. [Google Scholar]
- Edelstein, M. On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, 37, 74–79. [Google Scholar] [CrossRef]
- Nemystkii, V.V. The fixed point method in analysis. Usp. Mat. Nauk. 1936, 1, 141–174. (In Russian) [Google Scholar]
- Özgür, N.Y.; Taş, N. Some fixed point theorems on S-metric spaces. Mat. Vesnik. 2017, 69, 39–52. [Google Scholar]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Sedghi, S.; Dung, N.V. Fixed point theorems on S-metric spaces. Mat. Vesnik. 2014, 66, 113–124. [Google Scholar]
- Sehgal, V.M. On fixed and periodic points for a class of mappings. J. Lond. Math. Soc. 1972, 5, 571–576. [Google Scholar] [CrossRef]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Rhoades, B.E. Some theorems on weakly contractive maps. Nonlinear Anal. TMA 2001, 7, 2683–2693. [Google Scholar] [CrossRef]
- Shrivastava, S.; Daheriya, R.D.; Ughade, M. S-metric spaces, expanding mappings & fixed point theorems. Int. J. Sci. Innov. Math. Res. 2016, 4, 1–12. [Google Scholar]
- Özgür, N.Y.; Taş, N. Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 1433–1449. [Google Scholar] [CrossRef]
- Taş, N. Suzuki-Berinde type fixed-point and fixed-circle results on S-metric spaces. J. Linear Topol. Algebra 2018, 7, 233–244. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlaiki, N.; Özgür, N.Y.; Taş, N. New Fixed-Point Theorems on an S-metric Space via Simulation Functions. Mathematics 2019, 7, 583. https://doi.org/10.3390/math7070583
Mlaiki N, Özgür NY, Taş N. New Fixed-Point Theorems on an S-metric Space via Simulation Functions. Mathematics. 2019; 7(7):583. https://doi.org/10.3390/math7070583
Chicago/Turabian StyleMlaiki, Nabil, Nihal Yılmaz Özgür, and Nihal Taş. 2019. "New Fixed-Point Theorems on an S-metric Space via Simulation Functions" Mathematics 7, no. 7: 583. https://doi.org/10.3390/math7070583
APA StyleMlaiki, N., Özgür, N. Y., & Taş, N. (2019). New Fixed-Point Theorems on an S-metric Space via Simulation Functions. Mathematics, 7(7), 583. https://doi.org/10.3390/math7070583