# Poincaré-Type Inequalities for Compact Degenerate Pure Jump Markov Processes

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. The Neuroscience Framework

#### 1.2. The Model

#### 1.3. Poincaré-Type Inequalities

**Theorem**

**1.**

**Corollary**

**1.**

**Theorem**

**2.**

**Corollary**

**2.**

## 2. Proof of the Poincaré for General Initial Configurations

#### 2.1. Technical Results

**Lemma**

**1.**

- For all $t>{t}_{0},$ we have$$\sum _{y\in {D}_{x}}\frac{{\pi}_{t}^{2}({\Delta}^{i}\left(x\right),y)}{{\pi}_{t}(x,y)}\le {C}_{1}.$$
- For all $t\le {t}_{0},$ we have$$\sum _{y\in {D}_{x}\backslash \left\{{\Delta}^{i}\left(x\right)\right\}}\frac{{\pi}_{t}^{2}({\Delta}^{i}\left(x\right),y)}{{\pi}_{t}(x,y)}\le {C}_{1}$$$$\frac{{\pi}_{t}^{2}({\Delta}^{i}\left(x\right),{\Delta}^{i}\left(x\right))}{{\pi}_{t}(x,{\Delta}^{i}\left(x\right))}\le \frac{{\pi}_{t}({\Delta}^{i}\left(x\right),{\Delta}^{i}\left(x\right))}{{\pi}_{t}(x,{\Delta}^{i}\left(x\right))}\le \frac{{C}_{2}}{t}.$$

**Proof.**

**Lemma**

**2.**

**Proof.**

**Lemma**

**3.**

**Proof.**

#### 2.2. Proof of Theorem 1

## 3. Proof of the Poincaré Inequalities for Starting Configuration on the Domain of the Invariant Measure

**Lemma**

**4.**

**Proof.**

**Lemma**

**5.**

**Proof.**

#### Proof of Theorem 2

**Proof.**

## 4. Proof of the Poincaré Inequalities for the Invariant Measure

**Proof.**

## 5. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Galves, A.; Löcherbach, E. Infinite Systems of Interacting Chains with Memory of Variable Length-A Stochastic Model for Biological Neural Nets. J. Stat. Phys.
**2013**, 151, 896–921. [Google Scholar] [CrossRef] - Chevalier, J. Mean-field limit of generalized Hawkes processes. Stoch. Process. Their Appl.
**2017**, 127, 3870–3912. [Google Scholar] [CrossRef] [Green Version] - Duarte, A.; Löcherbach, E.; Ost, G. Stability, convergence to equilibrium and simulation of non-linear Hawkes Processes with memory kernels given by the sum of Erlang kernels. arXiv
**2016**, arXiv:1610.03300. [Google Scholar] - Duarte, A.; Ost, G. A model for neural activity in the absence of external stimuli. Markov Process. Relat. Fields
**2014**, 22, 37–52. [Google Scholar] - Hansen, N.; Reynaud-Bouret, P.; Rivoirard, V. Lasso and probabilistic inequalities for multivariate point processes. Bernoulli
**2015**, 21, 83–143. [Google Scholar] [CrossRef] - Hodara, P.; Löcherbach, E. Hawkes processes with variable length memory and an infinite number of components. Adv. Appl. Probab.
**2017**, 49, 84–107. [Google Scholar] [CrossRef] [Green Version] - Hodara, P.; Krell, N.; Löcherbach, E. Non-parametric estimation of the spiking rate in systems of interacting neurons. Stat. Inference Stoch. Process.
**2016**, 21, 81–111. [Google Scholar] [CrossRef] [Green Version] - Davis, M.H.A. Piecewise-derministic Markov processes: A general class off nondiffusion stochastic models. J. R. Stat. Soc. Ser. B
**1984**, 46, 353–388. [Google Scholar] - Davis, M.H.A. Markov models and optimization. In Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1993; Volume 49. [Google Scholar]
- Crudu, A.; Debussche, A.; Muller, A.; Radulescu, O. Convergence of stochastic gene networks to hybrid piecewise deterministic processes. Ann. Appl. Probab.
**2012**, 22, 1822–1859. [Google Scholar] [CrossRef] - Pakdaman, K.; Thieulen, M.; Wainrib, G. Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. Appl. Probab.
**2010**, 42, 761–794. [Google Scholar] [CrossRef] [Green Version] - Azaïs, R.; Bardet, J.B.; Genadot, A.; Krell, N.; Zitt, P.A. Piecewise deterministic Markov process (pdmps). Recent results. Proceedings
**2014**, 44, 276–290. [Google Scholar] - Ane, C.; Ledoux, M. On logarithmic Sobolev inequalities for continuous time random walks on graphs. Probab. Theory Relat. Fields
**2000**, 116, 573–602. [Google Scholar] - Chafai, D. Entropies, convexity, and functional inequalities. J. Math. Kyoto Univ.
**2004**, 44, 325–363. [Google Scholar] [CrossRef] - Diaconis, P.; Saloff-Coste, L. Logarithmic Sobolev inequalities for finite Markov Chains. Ann. Appl. Probab.
**1996**, 6, 695–750. [Google Scholar] [CrossRef] - Saloff-Coste, L. Lectures on finite Markov chains. In IHP Course 98, Ecole d’ Ete de Probabilites de Saint-Flour XXVI, Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1665, pp. 301–413. [Google Scholar]
- Wang, F.-Y.; Yuan, C. Poincaré inequality on the path space of Poisson point processes. J. Theor. Probab.
**2010**, 23, 824–833. [Google Scholar] [CrossRef] - Guionnet, A.; Zegarlinski, B. Lectures on Logarithmic Sobolev Inequalities. In IHP Course 98, in Seminare de Probabilite XXVI, Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 1801, pp. 1–134. [Google Scholar]
- Bakry, D.; Emery, M. Difusions hypercontractives. In Seminaire de Probabilites XIX, Springer Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1985; Volume 1123, pp. 177–206. [Google Scholar]
- Bakry, D.; Gentil, I.; Ledoux, M. Analysis and geometry of Markov diffusion operators. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2014; Volume 348. [Google Scholar]
- Diaconis, P.; Saloff-Coste, L. Geometric bounds for eigenvalues of Markov Chains. Ann. Probab.
**1991**, 1, 36–61. [Google Scholar] [CrossRef] - Bakry, D. L’hypercontructivité et son utilisation en théorie des semigroupes. Ecole d’Eté de Probabilités de St-Flour. Lecture Notes Math.
**1994**, 1581, 1–114. [Google Scholar] - Bakry, D. On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. New Trends Stoch. Anal.
**1997**, 43–75. [Google Scholar] - Bakry, D.; Cattiaux, P.; Guillin, A. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal.
**2008**, 254, 727–759. [Google Scholar] [CrossRef] - Cattiaux, P.; Guillin, A.; Wang, F.-Y.; Wu, L. Lyapunov conditions for super Poincaré inequality. J. Funct. Anal.
**2009**, 256, 1821–1841. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hodara, P.; Papageorgiou, I.
Poincaré-Type Inequalities for Compact Degenerate Pure Jump Markov Processes. *Mathematics* **2019**, *7*, 518.
https://doi.org/10.3390/math7060518

**AMA Style**

Hodara P, Papageorgiou I.
Poincaré-Type Inequalities for Compact Degenerate Pure Jump Markov Processes. *Mathematics*. 2019; 7(6):518.
https://doi.org/10.3390/math7060518

**Chicago/Turabian Style**

Hodara, Pierre, and Ioannis Papageorgiou.
2019. "Poincaré-Type Inequalities for Compact Degenerate Pure Jump Markov Processes" *Mathematics* 7, no. 6: 518.
https://doi.org/10.3390/math7060518