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Abstract: We aim to prove Poincaré inequalities for a class of pure jump Markov processes inspired
by the model introduced by Galves and Löcherbach to describe the behavior of interacting brain
neurons. In particular, we consider neurons with degenerate jumps, i.e., which lose their memory
when they spike, while the probability of a spike depends on the actual position and thus the past of
the whole neural system. The process studied by Galves and Löcherbach is a point process counting
the spike events of the system and is therefore non-Markovian. In this work, we consider a process
describing the membrane potential of each neuron that contains the relevant information of the past.
This allows us to work in a Markovian framework.

Keywords: Poincaré inequality; brain neuron networks; Galves-Löcherbach model

1. Introduction

The aim of this paper is to prove Poincaré inequalities for the semigroup Pt, as well as for the
invariant measure, of the model introduced in [1] by Galves and Löcherbach, to describe the activity of
a biological neural network. What is particularly interesting about the jump process in question is that
it is characterized by degenerate jumps, in the sense that after a particle (neuron) spikes, it loses its
memory by jumping to zero. Furthermore, the probability of a spike of a particular neuron at any time
depends on its actual position and thus the past of the whole neural system.

For Pt the associated semigroup, first we prove some Poincaré-type inequalities of the form

VarPt( f (x)) ≤ α(t)
∫ t

0
PsΓ( f , f )(x)ds + β

n

∑
i=1

∫ t

0
PsΓ( f , f )(∆i(x))ds.

for any possible starting configuration x. We give here the general form of the type of inequalities
investigated in this paper; however to avoid overloading this introduction with technical details
we postpone the definitions of classical quantities such as the “carré du champ” Γ( f , f ) and other
notations used here to Section 1.3.

Then, we restrict ourselves to the special case where the initial configuration x is in the domain of
the invariant measure, and we derive the stronger Poincaré inequality

VarPt( f (x)) ≤ α(t)PtΓ( f , f )(x) + β
∫ t

0
PsΓ( f , f )(x)ds.

Then we show a Poincaré inequality for the invariant measure π

Varπ( f ) ≤ cπ (Γ( f , f )) .

Mathematics 2019, 7, 518; doi:10.3390/math7060518 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/6/518?type=check_update&version=1
http://dx.doi.org/10.3390/math7060518
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 518 2 of 18

Before we describe the model, we present the neuroscience framework of the problem.

1.1. The Neuroscience Framework

The activity of one neuron is described by the evolution of its membrane potential. This evolution
presents from time to time a brief and high-amplitude depolarization called an action potential or spike.
The spiking probability or rate of a given neuron depends on the value of its membrane potential.
These spikes are the only perturbations of the membrane potential that can be transmitted from
one neuron to another through chemical synapses. When a neuron i spikes, its membrane potential is
reset to 0 while the so-called “post-synaptic neurons” influenced by neuron i receive an additional
amount of membrane potential.

From a probabilistic point of view, this activity can be described by a simple point process since
the whole activity is characterized by the jump times. In the literature, Hawkes processes are often
used to describe systems of interacting neurons, see [1–6] for example. The reset to 0 of the spiking
neuron provides a variable length memory for the dynamic and therefore point processes describing
these systems are non-Markovian.

On the other hand, it is possible to describe the activity of the network with a process modeling not
only the jump times but the whole evolution of the membrane potential of each neuron. This evolution
needs then to be specified between the jumps. In [7] the process describing this evolution follows
a deterministic drift between the jumps, more precisely the membrane potential of each neuron is
attracted with exponential speed towards an equilibrium potential. This process is then Markovian
and belongs to the family of Piecewise Deterministic Markov Processes introduced by Davis ([8,9]).
Such processes are widely used in probability modeling of e.g., biological or chemical phenomena
(see e.g., [10] or [11], see [12] for an overview). The point of view we adopt here is close to this
framework, but we work without drift between the jumps. We therefore consider a pure jump Markov
process and will make use of the abbreviation PJMP in the rest of the present work.

We consider a process Xt = (X1
t , ..., XN

t ), where N is the number of neurons in the network
and where for each neuron i, 1 ≤ i ≤ N and each time t ∈ R+, each variable Xi

t represents the
membrane potential of neuron i at time t. Each membrane potential Xi

t takes value in R+. A neuron
with membrane potential x “spikes” with intensity φ(x), where φ : R+ → R+ is a given intensity
function. When a neuron i fires, its membrane potential is reset to 0, interpreted as resting potential,
while the membrane potential of any post-synaptic neuron j is increased by Wi→j ≥ 0. Between
two jumps of the system, the membrane potential of each neuron is constant.

Working with Hawkes processes allows consideration of systems with infinitely many neurons,
as in [1] or [6]. For our purpose, we need to work in a Markovian framework and therefore our process
represents the membrane potentials of the neurons, considering a finite number N of neurons.

1.2. The Model

Let N > 1 be fixed and (Ni(ds, dz))i=1,...,N be a family of i.i.d. Poisson random measures on
R+ ×R+ with intensity measure dsdz. We study the Markov process Xt = (X1

t , . . . , XN
t ) taking values

in RN
+ and solving, for i = 1, . . . , N, for t ≥ 0,

Xi
t = Xi

0 −
∫ t

0

∫ ∞
0 Xi

s−1{z≤φ(Xi
s−)}

Ni(ds, dz) + ∑j 6=i Wj→i
∫ t

0

∫ ∞
0 1{z≤φ(X j

s−)}
1{Xi

s−≤m−Wj→i}N
j(ds, dz). (1)

In the above equation for each j 6= i, Wj→i ∈ R+ is the synaptic weight describing the influence
of neuron j on neuron i. Finally, the function φ : R+ 7→ R+ is the intensity function.

This can be seen in the following way. The first term Xi
0 is the starting point of the process at

time 0. The second term corresponds to the reset to 0 of neuron i when it spikes. The point process Ni
gives the times where a spike of neuron i can occur which actually happens with rate φ(Xi

s−) leading
to a reset to 0 of neuron i due to the term −Xi

s−. The third term corresponds to the modification of
membrane potential of post-synaptic neurons influenced by neuron i. The modification value is given
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by the synaptic weight Wj→i provided the new value is smaller than the maximum potential m, which
is ensured by the second indicatrix function.

The generator of the process X is given for any test function f : RN
+ → R and x ∈ RN

+ is
described by

L f (x) =
N

∑
i=1

φ(xi) [ f (∆i(x))− f (x)] (2)

where

(∆i(x))j =


xj + Wi→j j 6= i and xj + Wi→j ≤ m
xj j 6= i and xj + Wi→j > m
0 j = i

 (3)

for some m > 0. With this definition the process remains inside the compact set

D := {x ∈ RN
+ : xi ≤ m, 1 ≤ i ≤ N}. (4)

Furthermore, we also assume the following conditions about the intensity function:

φ(x) > cx + δ for x ∈ R+ (5)

for some strictly positive constants c and δ.
The probability for a neuron to spike grows with its membrane potential so it is natural to think

of the function φ as an increasing function. Condition (5) implies that this growth is at least linear, and
models the spontaneous activity of the system: whatever the configuration x is, the system will always
have a positive spiking rate.

1.3. Poincaré-Type Inequalities

Our purpose is to show Poincaré-type inequalities for our PJMP, whose dynamic is similar to
the model introduced in [1]. The main difference between our framework and the one of [1] relies in
the fact that as in [7], we study a process modeling the membrane potential of each neuron instead
of a point process focusing only on the spiking events. Focusing on the spike train is sufficient to
describe the network activity since it contains all the relevant information. However, the membrane
potential integrates each relevant spike that occurred in the past and this gives us a Markovian
framework. Regardless of the point of view, the notable difference in dynamics with [1] is the absence
of drift between jumps. We assume here that there is no loss of memory between spikes. Therefore,
our conclusions cannot directly apply to the model studied in [1].

We will investigate Poincaré-type inequalities at first for the semigroup Pt and then for the
invariant measure π. Concerning the semigroup inequality, we will study two different cases. The first,
the general one, where the system starts from any possible initial configuration. Then, we restrict to
initial configurations that belong to the domain of the invariant measure.

Let us first describe the general framework and define the Poincaré inequalities on a discrete
setting (see also [13–17]). At first we should note a convention we will widely use. For a function f and
measure ν we will write ν( f ) for the expectation of the function f with respect to the measure ν that is

ν( f ) =
∫

f dν.

We consider a Markov process (Xt)t≥0 which is described by the infinitesimal generator L and the
associated Markov semigroup Pt f (x) = Ex( f (Xt)). For a semigroup and its associated infinitesimal
generator we will need the following well know relationships: d

ds Ps = LPs = PsL (see for example [18]).
We define π to be the invariant measure for the semigroup (Pt)t≥0 if and only if

πPt = π.
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Furthermore, we define the “carré du champ” operator (see [19]) by:

Γ( f , g) :=
1
2
(L( f g)− fLg− gL f ).

For more details on this important operator and the inequalities that relate to it one can look
at [18–20]. For the PJMP process defined above with the specific generator L given by (2) a simple
calculation shows that the carré du champ takes the following form.

Γ( f , f ) =
1
2
(L f 2 − 2 fL f ) =

1
2
(

N

∑
i=1

φ(xi) [ f (∆i(x))− f (x)]2).

We say that a measure ν satisfies a Poincaré inequality if there exists constant C > 0 independent
of f , such that

(SG) Varν( f ) ≤ Cν(Γ( f , f ))

where the variance of a function f with respect to a measure ν is defined with the usual way as:
Varν( f ) = ν( f − ν( f ))2. It should be noted that in the case where the measure ν is the semigroup Pt,
then the constant C may depend on t, C = C(t).

For the Poincaré inequality for continuous time Markov chains one can look in [16,21].
In [13,14,17], the Poincaré inequality (SG) for Pt has been shown for some point processes, for a constant
that depends on time t, while the stronger log-Sobolev inequality, has been disproved. The general
method used in these papers that will be followed also in the current work, is based on the so-called
semigroup method which shows the inequality for the semigroup Pt.

The main difficulty here is that for the pure jump Markov process that we examine in the current
paper, the translation property

Ex+y f (z) = Ex f (z + y)

used in [13,17] does not hold here. This appears to be important because the translation property is
a key element in these papers, since it allows to bound the carré du champ by comparing the mean
Ex f (z) where the process starts from position x with the mean E∆i(x) f (z) where it starts from ∆i(x),
the jump-neighbor of x. However, we can still obtain Poincaré-type inequalities, but with a constant
C(t) which is a polynomial of order higher than one. This power is higher than the constant C(t) = t,
the optimal obtained in [17] for a path space of Poisson point processes.

It should be noted that the aforementioned translation property relates with the Γ2 criterion
(see [22,23]) for the Poincaré inequality, which states that if

Γ2( f ) :=
1
2
L(Γ( f , f ))− 2Γ( f ,Ll) ≥ 0,

then the Poincaré inequality is satisfied. A more detailed discussion on this criterion follows later in
Section 2.2. Since this is not satisfied in our case we obtain a Poincaré-type inequality instead.

Before we present the results of the paper it is important to highlight an important distinction
on the nature of the initial configuration from which the process can start. We can classify the initial
configurations according to the return probability to them. Recall that the membrane potential xi of
every neuron i takes positive values within a compact set and that whenever a neuron j different than
i spikes, the neuron i jumps Wi→j positions up, while the only other movement it does is jumping to
zero when it spikes. That means that every variable xi can jump down only to zero while after the first
jump, can only pass from a finite number of possible positions since the state-space is then discrete
inside a compact due to the imposed maximum potential m. Since the neurons stay still between spikes,
that implies that there is a finite number of possible configurations to which X = (X1, ...XN) can return
after every neuron has spiked for the first time. This is the domain of the invariant measure π of the
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semigroup Pt, and we will denote it as D̂. Thus, if the initial configuration x = (x1, ...xN) does not
belong to D̂, after the process enters D̂, it will never return to this initial configuration.

It should be noted that it is easy to find initial configurations x = (x1, ...xN) /∈ D̂. For example
one can consider any x such that at least one of the xis is not a sum of synaptic weights Wj→i, or any x
with xi = xj for every i and j.

Below we present the Poincaré inequality for the semigroup Pt for general starting configurations.

Theorem 1. Assume the PJMP as described in (2)–(5). Then, for every x ∈ D, the following Poincaré-type
inequality holds.

VarEx ( f (xt)) ≤ α(t)
∫ t

0
PsΓ( f , f )(x)ds + β

n

∑
i=1

∫ t

0
PsΓ( f , f )(∆i(x))ds

with α(t) a second order polynomial of the time t that does not depend on the function f and β a constant.

One notices that since the coefficient α(t) is a polynomial of second order and β is a constant,
the first term dominates over the second for long time t, as shown in the next corollary.

Corollary 1. Assume the PJMP as described in (2)–(5). Then, for every x ∈ D, and t sufficiently large,
i.e., t > ζ( f )

VarEx ( f (xt)) ≤ 2α(t)
∫ t

0
PwΓ(( f , f ))(x)dw

where ζ( f ) is a constant depending only on f ,

ζ( f ) = max
x∈D

(
β ∑n

i=1 Γ( f , f )(∆i(x))
Γ( f , f )(x)

) 1
2

.

One should notice that although the lower value ζ( f ) depends on the function f , the coefficient
2α(t) of the inequality does not depend on the function f .

The proof of the Poincaré inequality for the general initial configuration is presented in Section 2.
In the special case where x is on the domain of the invariant measure we obtain the

stronger inequality.

Theorem 2. Assume the PJMP as described in (2)–(5). Then, there exists a t1 > 0 such that for every t > t1

and for every x ∈ D̂, the following Poincaré-type inequality holds.

VarEx ( f (xt)) ≤γ(t)PtΓ( f , f )(x) + 2
∫ t

0
PsΓ( f , f )(x)ds.

with γ(t) a third order polynomial of the time t that do not depend on the function f .

As in the general case, for t large enough we have the following corollary.

Corollary 2. Assume the PJMP as described in (2)–(5). Then, there exists a t1 > 0, such that for every x ∈ D̂,
and t sufficiently large, i.e., t > max{ξ( f ), t1}

VarEx ( f (xt)) ≤ 2γ(t)PtΓ( f , f )(x)
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where ξ( f ) is a constant depending only on f ,

ξ( f ) =
(

2 maxx∈D̂ Γ( f , f )(x)
minx∈D̂ Γ( f , f )(x)

) 1
2

.

We conclude this section with the Poincaré inequality for the invariant measure π presented on
the next theorem.

Theorem 3. Assume the PJMP as described in (2)–(5). Then π satisfies a Poincaré inequality

π ( f − π f )2 ≤ C0π(Γ( f , f ))

for some constant C0 > 0.

2. Proof of the Poincaré for General Initial Configurations

In this section, we focus on neurons that start with values on any possible initial configuration
x ∈ D as described by (2)–(5), and we prove the local Poincaré inequalities presented in Theorem 1
and Corollary 1. Let us first state some technical results.

2.1. Technical Results

We start by showing properties of the jump probabilities of the degenerate PJMP processes.
Since the process is constant between jumps, the set of reachable positions y after a given time t for
a trajectory starting from x is discrete. We therefore define

πt(x, y) := Px(Xt = y) and Dx := {y ∈ D, πt(x, y) > 0}.

This set is finite for the following reasons. On one hand, for each neuron i ∈ I, the set
Si = {0} ∪ {∑n

k=1 Wjk→i, n ∈ N∗, jk ∈ I} is discrete and such that the intersection with any compact is
finite. On the other hand, we have Dx ⊂ [∏i∈I (Si ∪ (xi + Si))] ∩ D.

The idea is that since the process is constant between jumps, elements of Dx are such that there
exists a sequence of jumps leading from x to y. Since we are only interested on the arrival position
y, among all jump sequences leading to y, we can consider only sequences with minimal number of
jumps and the number of such jump sequences leading to positions inside a compact is finite, due to
the fact that each Wj→i is non-negative.

Since x is also in the compact D, we can have an upper bound for the cardinal of Dx independent
from x.

For a given time s ∈ R+ and a given position x ∈ D, we denote by ps(x) the probability that
starting at time 0 from position x, the process has no jump in the interval [0, s], and for a given neuron
i ∈ I by pi

s(x) the probability that the process has exactly one jump of neuron i and no jumps for
other neurons.

Introducing the notation φ(x) = ∑j∈I φ(xj) and given the dynamics of the model, we have that

ps(x) = e−sφ(x)

and

pi
s(x) =

∫ s

0
φ(xi)e−uφ(x)e−(s−u)φ(∆i(x))du

=

{
φ(xi)

φ(x)−φ(∆i(x))

(
e−sφ(∆i(x)) − e−sφ(x)

)
if φ(∆i(x)) 6= φ(x)

sφ(xi)e−sφ(x) if φ(∆i(x)) = φ(x)

}
. (6)



Mathematics 2019, 7, 518 7 of 18

Define

t0 =


ln(φ(x))−ln(φ(∆i(x)))

φ(x)−φ(∆i(x)) if φ(∆i(x)) 6= φ(x)
1

φ(x) if φ(∆i(x)) = φ(x)

 . (7)

As a function of s, pi
s(x) is continuous, strictly increasing on (0, t0) and strictly decreasing on

(t0,+∞) and we have pi
0(x) = 0.

Lemma 1. Assume the PJMP as described in (2)–(5).There exists positive constants C1 and C2 independent of
t, x and y such that

• For all t > t0, we have

∑
y∈Dx

π2
t (∆

i(x), y)
πt(x, y)

≤ C1.

• For all t ≤ t0, we have

∑
y∈Dx\{∆i(x)}

π2
t (∆

i(x), y)
πt(x, y)

≤ C1

and
π2

t (∆
i(x), ∆i(x))

πt(x, ∆i(x))
≤ πt(∆i(x), ∆i(x))

πt(x, ∆i(x))
≤ C2

t
.

Proof. As said before, the set Dx is finite so it is sufficient to obtain an upper bound for the

ratio π2
t (∆

i(x),y)
πt(x,y) .

We have for all s ∈ (0, t)

π2
t (∆

i(x), y)
πt(x, y)

≤
(
πt−s(∆i(x), y)ps(y) + supz∈D(1− ps(z))

)2

pi
s(x)πt−s(∆i(x), y)

. (8)

Here we decomposed the numerator according to two events. Either Xt−s = y and there no jump
in the interval of time [t− s, t] or there is at least one jump in the interval of time [t− s, t], whatever
the position z ∈ D of the process at time t− s.

From the previous inequality, we then obtain

π2
t (∆

i(x), y)
πt(x, y)

≤

(
πt−s(∆i(x), y)ps(y) + (1− e−sNφ(m))

)2

pi
s(x)πt−s(∆i(x), y)

. (9)

where we recall that the constant m appears in the definition of the compact set D introduced in (4).
Let us first assume that t > t0. Recall that t0 is defined in (7).
If πt−t0(∆

i(x), y) ≥ pi
t0
(x), we have

π2
t (∆

i(x), y)
πt(x, y)

≤ 1(
pi

t0
(x)
)2 . (10)

Assume now that πt−t0(∆
i(x), y) < pi

t0
(x) and let us recall that as a function of s, pi

s(x) is
continuous, strictly increasing on (0, t0) and pi

0(x) = 0.
On the other hand, as a function of s, πt−s(∆i(x), y) is continuous and takes value πt(∆i(x), y) > 0

for s = 0.
We deduce from this that there exists s∗ ∈ (0, t0) such that pi

s∗(x) = πt−s∗(∆
i(x), y).

Now (9) with s = s∗ gives us

π2
t (∆

i(x), y)
πt(x, y)

≤ (ps∗(y))
2 + 2ps∗(y)

1− e−s∗Nφ(m)

pi
s∗(x)

+

(
1− e−s∗Nφ(m)

pi
s∗(x)

)2

. (11)
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For all s ∈ (0, t0), ps(y) ≤ 1, and we then study 1−e−sNφ(m)

pi
s(x)

as a function of s ∈ (0, t0).

Using the explicit value of pi
s(x) given in (6) and assumption (5), we obtain for all s ∈ (0, t0),

1− e−sNφ(m)

pi
s(x)

≤


et0 Nφ(m)

δ
(φ(x)−φ(∆i(x)))(1−e−sNφ(m))

1−e−s(φ(x)−φ(∆i(x)))
if φ(∆i(x)) 6= φ(x)

et0 Nφ(m)

δ
1−e−s

s if φ(∆i(x)) = φ(x)

 .

Recall that δ > 0 is defined in assumption (5) and satisfies φ(x) ≥ δ for all x ∈ R+.
In both cases, when s is far from zero, we can obtain an upper bound independent of x, and when

s goes to zero, the limit of the right-hand term is Nφ(m)et0 Nφ(m)

δ .
From this, we deduce that there exists a constant MD such that for all s ∈ (0, t0),

1− e−sNφ(m)

pi
s(x)

≤ MD.

Putting all together, we obtain the announced result for the case where t > t0.
We now consider the case where t ≤ t0.
We start by considering the case where y 6= ∆i(x) and go back to (9).
As a function of s, πt−s(∆i(x), y) is continuous and takes values πt(∆i(x), y) > 0 and

π0(∆i(x), y) = 0 respectively for s = 0 and s = t.
We deduce from this that there exists s∗ ∈ (0, t) ⊂ (0, t0) such that pi

s∗(x) = πt−s∗(∆
i(x), y) and

we are back in the previous case so that the same result holds.
Let us assume now that y = ∆i(x), we have

π2
t (∆

i(x), y)
πt(x, y)

≤ πt(∆i(x), ∆i(x))
πt(x, ∆i(x))

≤ 1
pi

t(x)
. (12)

Recall the explicit expression of pi
t(x) given in (6) and use (5) to bound the intensity function

pi
t(x) = tφ(xi)e−tφ(x) ≥ tδe−t0 supx∈D φ(x) = Ct

for some constant C independent of t and x, which gives us the announced result.

Taking under account the last result, we can obtain the first technical bound needed in the proof
of the local Poincaré inequality.

Lemma 2. Assume the PJMP as described in (2)–(5). Then(∫ t−s

t0

(E∆i(x) −Ex)
N

∑
j=1

φ(xj
u)( f (∆j(xu))− f (xu))du

)2

≤ (t− s)(1 + C1)M
∫ t−s

t0

ExΓ(( f , f ))(xu).

Proof. Consider πt(x, y) to probability kernel of Ex, i.e., Ex( f (xt)) = ∑y πt(x, y) f (y). Then we
can write

II1 :=

(∫ t−s

t0

(E∆i(x) −Ex)
N

∑
j=1

φ(xj
u)( f (∆j(xu))− f (xu))du

)2

=

(∫ t−s

t0
∑
y

πu(x, y)

(
(

πu(∆i(x), y)
πu(x, y)

− 1)
N

∑
j=1

φu(yj)( f (∆j(y))− f (y))

)
du

)2

.
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To continue we will use Holder’s inequality to pass the second power inside the first integral,
which will give

II1 ≤ (t− s)
∫ t−s

t0

(
∑
y

πu(x, y)

(
(

πu(∆i(x), y)
πu(x, y)

− 1)
N

∑
j=1

φu(yj)( f (∆j(y))− f (y))

))2

du

and then we apply the Cauchy-Schwarz inequality for the measure Ex to get

II1 ≤ (t− s)
∫ t−s

t0

Ex
(

πu(∆i(x), y)
πu(x, y)

− 1
)2

∗Ex


N

∑
j=1

φ(yj
u)( f (∆j(yu))− f (yu))︸ ︷︷ ︸

:=S


2

du.

The first quantity involved in the above integral is bounded from Lemma 1 by a constant

Ex
(

πu(∆i(x), y)
πu(x, y)

− 1
)2

≤ 1 + Ex
(

πu(∆i(x), y)
πu(x, y)

)2

= 1 + ∑
y∈Dx

π2
u(∆i(x), y)
πu(x, y)

≤ 1 + C1

while for the sum involved in the second quantity, since φ(x) ≥ δ > 0 we can use Holder’s inequality

S =

(
N

∑
j=1

φ(yj
u)

)2
 N

∑
j=1

φ(yj
u)

∑N
j=1 φ(yj

u)
( f (∆j(yu))− f (yu))

2

≤ M
N

∑
j=1

φ(yj
u)( f (∆j(yu))− f (yu))

2 = MΓ( f , f )(xu)

where M = supx∈D ∑N
i=1 φ(xi), so that

II1 ≤ (t− s)(1 + C1)M
∫ t−s

t0

ExΓ(( f , f ))(xu)du.

We will now extend the last bound to an integral on a time domain starting at 0.

Lemma 3. For the PJMP as described in (2)–(5), we have(∫ t−s

0

(
E∆i(x)(L f (xu))−Ex(L f (xu))

)
du
)2
≤16t2

0MΓ( f , f )(∆i(x))

+ c(t− s)
∫ t−s

0
ExΓ(( f , f ))(xu)du

where c(t) = t08M(C1 + 1) + 2t(1 + C1)M.

Proof. To calculate a bound for

E∆i(x)(L f (xu))−Ex(L f (xu))
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we will need to control the ration π2
u(∆i(x),y)
πu(x,y) . As shown in Lemma 1, this ratio depends on time when

u ≤ t0, otherwise it is bounded by a constant. For this reason, we will start by breaking the integration
variable of the time t into two domains, (0, t0) and (t0, t− s).

I1 :=
(∫ t−s

0

(
E∆i(x)(L f (xu))−Ex(L f (xu))

)
du
)2
≤

2

(∫ t−s

t0

(E∆i(x) −Ex)
N

∑
i=1

φ(xi
u)( f (∆i(xu)− f (xu))du

)2

︸ ︷︷ ︸
II1

+ 2

(∫ t0

0
(E∆i(x) −Ex)

N

∑
i=1

φ(xi
u)( f (∆i(xu))− f (xu))du

)2

︸ ︷︷ ︸
:=II2

. (13)

The first summand II1 is upper bounded by the previous lemma. To bound the second term II2

on the right-hand side of (13) we write

II2 ≤2

(∫ t0

0
(πu(∆i(x), ∆i(x))− πu(x, ∆i(x)))

N

∑
i=1

φ(∆i(x)i)( f (∆i(∆i(x))− f (∆i(x)))du

)2

︸ ︷︷ ︸
:=III1

+ 2

∫ t0

0
( ∑

y∈D,y 6=∆i(x)
(πu(∆i(x), y)− πu(x, y))

N

∑
i=1

φ(yi)( f (∆i(y)− f (y))du

2

︸ ︷︷ ︸
:=III2

. (14)

The distinction on the two cases, whether after time u the neurons configuration is ∆i(x) or not,

relates to the two different bounds Lemma 1 provides for the fraction π2
t (∆

i(x),y)
πt(x,y) whether y is ∆i(x) or

not. We will first calculate the second term on the right-hand side. For this term we will work similar
to Lemma 2. At first we will apply the Holder inequality on the time integral after we first divide with
the normalization constant t0. This will give

III2 ≤ t0

∫ t0

0

 ∑
y∈D,y 6=∆i(x)

(
πu(∆i(x), y)

πu(x, y)
− 1)πu(x, y)

N

∑
i=1

φ(yi)( f (∆i(y))− f (y)

2

du.

Now we will use the Cauchy-Schwarz inequality in the first sum. We will then obtain the following

III2 ≤t0

∫ t0

0

 ∑
y∈D,y 6=∆i(x)

πu(x, y)(
πu(∆i(x), y)

πu(x, y)
− 1)2

 ∗
 ∑

y∈D,y 6=∆i(x)
πu(x, y)

(
N

∑
i=1

φ(yi)( f (∆i(y))− f (y)

)2
 du. (15)

The first term on the last product can be upper bounded from Lemma 1

∑
y∈D,y 6=∆i(x)

πu(x, y)(
πu(∆i(x), y)

πu(x, y)
− 1)2 ≤ ∑

y∈D,y 6=∆i(x)
(

π2
u(∆i(x), y)
πu(x, y)

+ πu(x, y))

≤(C1 + 1). (16)
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Meanwhile for the second term involved in the product of (15) we can write

∑
y∈D,y 6=∆i(x)

πu(x, y)

(
N

∑
i=1

φ(yi)( f (∆i(y))− f (y)

)2

≤ ∑
y∈D,y 6=∆i(x)

πu(x, y)(
N

∑
i=1

φ(yi))
N

∑
i=1

φ(yi)( f (∆i(y))− f (y))2

≤ M ∑
y

πu(x, y)Γ( f , f )(y)

= MExΓ( f , f )(xu)

where for the first bound we made use once more of the Holder inequality, after we divided with the
appropriate normalization constant ∑N

i=1 φ(xi
u). If we put the last bound together with (16) into (15),

we obtain

III2 ≤t0M(C1 + 1)
∫ t0

0
ExΓ( f , f )(xu)du. (17)

We now calculate the first summand of (14). Notice that in this case we cannot use the analogue

bound from Lemma 1, that is π2
t (∆

i(x),∆i(x))
πt(x,∆i(x)) ≤ C2

t , as we did for III2, since that will lead to a final upper

bound III1 ≤ t0M(C1 + 1)
∫ t0

0
1
uE

xΓ( f , f )(xu)du which may diverge. Instead, we will bound the III1

by the carré du champ of the function after the first jump. We can write

III1 ≤4

(∫ t0

0
(

N

∑
i=1

φ(∆i(x)i)| f (∆i(∆i(x)))− f (∆i(x))|du

)2

≤4t2
0(

N

∑
i=1

φ(∆i(x)i))2

(
N

∑
i=1

φ(∆i(x)i)

∑N
i=1 φ(∆i(x)i)

| f (∆i(∆i(x)))− f (∆i(x))|
)2

where above we divided with the normalization constant ∑N
i=1 φ(∆i(x)i), since φ(x) ≥ δ. We can now

apply the Holder inequality on the sum, so that

III1 ≤ 4t2
0M(

N

∑
i=1

φ(∆i(x)i)( f (∆i(∆i(x)))− f (∆i(x))2) = 4t2
0MΓ( f , f )(∆i(x)).

If we combine this together with (17) and (14) we get the following bound for the second
term of (13)

II2 ≤ 8t2
0MΓ( f , f )(∆i(x)) + 4(C1 + 1)t0M

∫ t0

0
ExΓ( f , f )(xu)du.

The last one together with the bound shown in Lemma 2 for the first term II1 of (13) gives

I1 ≤t2
016MΓ( f , f )(∆i(x)) + t08M(C1 + 1)

∫ t0

0
ExΓ( f , f )(xu)du

+ 2(t− s)(1 + C1)M
∫ t−s

t0

ExΓ(( f , f ))(xu)du

≤t2
016MΓ( f , f )(∆i(x)) + 2M(C1 + 1)(4t0 + (t− s))

∫ t−s

0
ExΓ(( f , f ))(xu)du.
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since the carré du champ is non-negative, as shown below

Γ( f , f ) =
1
2
(L( f 2)− 2 fL f ) = lim

t↓0

1
2t

Pt f 2 − (Pt f )2 ≥ 0

by Cauchy-Swartz inequality.

We have obtained all the technical results that we need to show the Poincaré inequality for the
semigroup Pt for general initial configurations.

2.2. Proof of Theorem 1

Denote Pt f (x) = Ex f (xt). Then

Pt f 2(x)− (Pt f (x))2 =
∫ t

0

d
ds

Ps(Pt−s f )2(x)ds =
∫ t

0
PsΓ(Pt−s f , Pt−s f )(x)ds (18)

since d
ds Ps = LPs = PsL.

We can write

Γ(Pt−s f , Pt−s f )(x) =
N

∑
i=1

φ(xi)(E∆i(x) f (xt−s)−Ex f (xt−s))
2. (19)

If we could use the translation property Ex+y f (z) = Ex f (z + y) used for instance in proving
Poincaré and modified log-Sobolev inequalities in [13,17], then we could bound relatively easy the
carré du champ of the expectation of the functions by the carré du champ of the functions themselves,
as demonstrated below

N

∑
i=1

φ(xi)(E∆i(x) f (xt−s)−Ex f (xt−s))
2 =

N

∑
i=1

φ(xi)(Ex f (∆i(xt−s))−Ex f (xt−s))
2

≤Pt−sΓ( f , f )(x)

The inequality Γ(Pt f , Pt f ) ≤ PtΓ( f , f ) for t > 0 relates directly with the Γ2 criterion (see [22,23])
which states that if Γ2( f ) := 1

2L(Γ( f , f ))− 2Γ( f ,Ll) ≥ 0 then the Poincaré inequality is true, since

d
ds

(PsΓ(Pt−s f , Pt−s f )) =
1
2

Ps(LΓ(Pt−s f , Pt−s f ))− 2Γ(Pt−s f ,LPt−s f )

=Ps(Γ2(Pt−s f )) ≥ 0

implies Γ(Pt f , Pt f ) ≤ PtΓ( f , f ) (see also [13]).
Unfortunately, this is not the case with our PJMP where the degeneracy of jumps and the

memoryless nature of them allows any neuron xi to jump to zero from any position, with a probability
that depends on the current configuration of the neurons. Moreover, contrary on the case of Poisson
processes, our intensity also depends on the position.

To obtain the carré du champ of the functions we will make use of the Dynkin’s formula which
will allow us to bound the expectation of a function with the expectation of the infinitesimal generator
of the function which is comparable to the desired carré du champ of the function.

Therefore, from Dynkin’s formula

Ex f (xt) = f (x) +
∫ t

0
Ex(L f (xu))du
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we get (
E∆i(x) f (xt−s)−Ex f (xt−s)

)2
≤2 ( f (∆i(x))− f (x))2

+ 2
(∫ t−s

0

(
E∆i(x)(L f (xu))−Ex(L f (xu))

)
du
)2

.

To bound the second term above we will use the bound shown in Lemma 3(
E∆i(x) f (xt−s)−Ex f (xt−s)

)2
≤2 ( f (∆i(x))− f (x))2 + 32t2

0MΓ( f , f )(∆i(x))

+ 2c(t− s)
∫ t−s

0
ExΓ(( f , f ))(xu)du

This together with (19) gives

Γ(Pt−s f , Pt−s f )(x) ≤2Γ( f , f )(x) + 32t2
0M

n

∑
i=1

φ(xi)Γ( f , f )(∆i(x))

+ 2Mc(t− s)
∫ t−s

0
ExΓ(( f , f ))(xu)du.

Finally, plugging this in (18) we obtain

Pt f 2(x)− (Pt f (x))2 ≤2
∫ t

0
PsΓ( f , f )(x)ds + 32t2

0M
∫ t

0
Ps

n

∑
i=1

φ(xi)Γ( f , f )(∆i(x))ds

+ 2M
∫ t

0
c(t− s)Ps

∫ t−s

0
ExΓ(( f , f ))(xu)duds.

For the second term we can bound φ by M. For the last term on the right-hand side, since the
carré du champ is non-negative, we can get

Ps

∫ t−s

0
ExΓ(( f , f ))(xu)du = Ps

∫ t

s
Pw−sΓ(( f , f ))(x)dw

≤ Ps

∫ t

0
Pw−sΓ(( f , f ))(x)dw =

∫ t

0
PwΓ(( f , f ))(x)dw.

where above we used the property of the Markov semigroup PsPw−s = Pw . Since this last quantity
does not depend on s, and c(t− s) ≤ c(t) we further get

∫ t

0
c(t− s)Ps

∫ t−s

0
ExΓ(( f , f ))(xu)duds ≤ c(t)t

∫ t

0
PwΓ(( f , f ))(x)dw.

Putting everything together we finally obtain

Pt f 2(x)− (Pt f (x))2 ≤(2 + 2Mc(t)t)
∫ t

0
PsΓ( f , f )(x)ds

+ 32t2
0M2

n

∑
i=1

∫ t

0
PsΓ( f , f )(∆i(x))ds.

And so, the theorem follows for constants

α(t) = 2 + 2Mtc(t) = 2 + 2Mtt08M(C1 + 1) + 4t2(1 + C1)M2 and β = 32t2
0M2.
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3. Proof of the Poincaré Inequalities for Starting Configuration on the Domain of the
Invariant Measure

We start by showing that in the case where the initial configuration belongs on the domain x ∈ D̂
of the invariant measure, we obtain a strong lower bound for the probabilities πt(x, y) = Px(Xt = y),
for time t big enough, as presented on the following lemma.

Lemma 4. Assume the PJMP as described in (2)–(5). Then, for every x ∈ D̂ and y ∈ Dx

πt(x, y) ≥ 1
θ

for t ≥ t1 = 1
δ + t0.

Proof. Since D̂ ⊂ D is finite, we know that there exists a strictly positive constant η, such that
π(x) > η > 0 for every x ∈ D̂. Since, limt→∞ πt(x, y) = π(y) for every x ∈ D̂, such that y ∈ Dx,
we obtain that there exists a θ > 0 such that πt(x, y) > 1

θ for every x ∈ D̂, such that y ∈ Dx, since
D̂ ⊂ D is finite.

Taking under account the last result, we can obtain the first technical bound needed in the proof
of the local Poincaré inequality, taking advantage of the bounds shown for times bigger than t1.

Lemma 5. Assume the PJMP as described in (2)–(5). Then, for every z ∈ D̂

Ps

(∫ t−s

0

(
E∆i(z)(L f (zu)Izu∈D̂)−Ez(L f (zu)Izu∈D̂)

)
du
)2
≤ 4θ2t2MEx(Γ( f , f )(xt)Ixt∈D̂)

for every t ≥ t1.

Proof. We can compute

I2 :=Ps

(∫ t−s

0

(
E∆i(z)(L f (zu)Izu∈D̂)−Ez(L f (zu)Izu∈D̂)

)
du
)2

≤2Ps

∫ t

0
∑

y∈D̂

πu(∆i(z), y)|L f (y)|du

2

+ 2Ps

∫ t

0
∑

y∈D̂

πu(z, y)|L f (y)|du

2

Now we will use three times the Cauchy-Schwarz inequality, to pass the square inside the integral
and the two sums. We will then obtain

I2 ≤2θ2tM ∑
ω=z,∆i(z)

∑
y∈D̂

∫ t

0
Psπu(ω, y)

N

∑
i=1

φ(yi) ( f (∆i(y))− f (y))2 du

=2θ2tM ∑
ω=z,∆i(z)

∑
y∈D̂

∫ t

0
πs+u(ω, y)

N

∑
i=1

φ(yi) ( f (∆i(y))− f (y))2 du

where above we used the semigroup property PsPu = Ps+u. Since t ≥ t1, we can use Lemma 4 to
bound for every w and y ∈ D̂, πu+s(w, y) ≤ θπt(x, y). We then obtain

I2 ≤ 4θ2t2M ∑
y∈D

πt(x, y)
N

∑
i=1

φ(yi) ( f (∆i(y))− f (y))2

= 4θ2t2MPtΓ( f , f )(x).
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3.1. Proof of Theorem 2

We can now show the Poincaré inequality for the semigroup Pt for initial configurations inside
the domain D̂ of the invariant measure π.

Proof. We will work as in the proof of the Poincaré inequality of Theorem 1 for general initial
conditions. As before, we denote Pt f (x) = Ex f (xt). Then

Ex( f 2(xt)Ixt∈D̂)−
(
Ex( f (xt)Ixt∈D̂)

)2
=
∫ t

0

d
ds

Ps

(
Exs( f (xt−s)Ixt−s∈D̂)

)2
(x)ds

=
∫ t

0
PsΓ(Exs( f (xt−s)Ixt−s∈D̂),E

xs( f (xt−s)Ixt−s∈D̂))(x)ds (20)

since d
ds Ps = LPs = PsL. To bound the carré du champ, as in the general case of Theorem 1, from (19)

and Dynkin’s formula we obtain the following

Γ(Exs( f (xt−s)Ixt−s∈D̂),E
xs( f (xt−s)Ixt−s∈D̂)) ≤ 2Γ( f , f )(xs)

+ 2
N

∑
i=1

φ(xi
s)

(∫ t−s

0

(
E∆i(xs)(L f (xu)Ixu∈D̂)−Exs(L f (xu)Ixu∈D̂)

)
du
)2

.

From that and (20) and the bound M = supx∈D ∑N
i=1 φ(xi) on φ, we then get

Ex( f 2(xt)Ixt∈D̂)−
(
Ex( f (xt)Ixt∈D̂)

)2
≤ 2

∫ t

0
PsΓ( f , f )(x)ds

+2M
N

∑
i=1

∫ t

0
Ps

(∫ t−s

0

(
E∆i(xs)(L f (xu)Ixu∈D̂)−Exs(L f (xu)Ixu∈D̂)

)
du
)2

ds.

Since t ≥ t1, we can use Lemma 5 to bound the second term on the right-hand side

Ex( f 2(xt)Ixt∈D̂)−
(
Ex( f (xt)Ixt∈D̂)

)2
≤ 2

∫ t

0
PsΓ( f , f )(x)ds + 8θ2M2Nt3PtΓ( f , f )(x).

4. Proof of the Poincaré Inequalities for the Invariant Measure

In this section, we prove a Poincaré inequality for the invariant measure π presented in Theorem 3,
using methods developed in [20,24,25].

Proof. At first assume π( f ) = 0. We can write

Varπ( f ) =
∫

f 2dπ =
∫

f 2ID̂dπ.

We will follow the method from [16] used to prove Spectral Gap for finite Markov chains.
Since π( f ) = 0, we can write∫

f 2ID̂dπ =
1
2

∫ ∫
( f (x)− f (y))2Ix∈D̂Iy∈D̂π(dx)π(dy).
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Consider δ(x, y) = {i1, i2, ..., i|γ(x,y)|} the shortest path from x ∈ D̂ to y ∈ D̂, where the indexes ik
stand for the neuron that spikes. Since D̂ is finite max{x, y ∈ D̂ : |δ(x, y)|} is finite. We denote x̃0 = x
and x̃k = ∆ik (∆ik−1

(...∆i1(x))...), for k = 1, ..., |δ(x, y)|, so that x̃|δ(x,y)| = y. So, we can write

π(x)π(y)( f (x)− f (y))2 ≤π(y)π(x)
|δ(x,y)|

∑
j=0

( f (∆(x̃j)ij)− f (x̃j))2

≤π(y)π(x)
δ

|δ(x,y)|

∑
j=0

ϕ(x̃i
ij
)( f (∆(x̃j)ij)− f (x̃j))2

where above we used that φ ≥ δ. We can now form the caré du champ

π(x)π(y)( f (x)− f (y))2 ≤π(y)π(x)
δ

|δ(x,y)|

∑
j=0

∑
i∈D

ϕ(x̃i
ij
)( f (∆(x̃j)i)− f (x̃j))2

≤ π(y)π(x)
min{x ∈ D̂ : π(x)}δ

|δ(x,y)|

∑
j=0

π((x̃j))Γ( f , f )(x̃j).

We then have ∫
f 2IDdπ ≤ N2

2 min{x ∈ D̂ : π(x)}δ ∑
x∈D

π(x)Γ( f , f )(x)

=
N2

2 min{x ∈ D̂ : π(x)}δ
π(Γ( f , f )ID̂).

Putting all together leads to

Varπ( f ) ≤ N2

2 min{x ∈ D̂ : π(x)}δ

∫
Γ( f , f )dπ.

5. Discussion

In this paper, we study the probabilistic model introduced by Galves and Löcherbach in [1],
in order to describe neural networks. In particular, we want to show that despite the degenerate nature
of the process, one can still obtain Poincaré-type inequalities for the associated semigroup, similar to
the ones obtained by [13,14,17] for point processes without degenerate jumps.

In terms of practical applications, the concentration inequality we have derived for the invariant
measure π, implies that the process remains very close to its mean, while the Poincaré-type inequalities
for the semigroup, imply that despite the degeneracy that characterizes the behavior of the neural
system, after a long time passes the neurons behave closer to a system without degeneracy.

In the current paper we studied both the cases where the initial configuration, belongs and does
not belong in the domain of the invariant measure. Future directions should focus on restricting to the
special case where the initial configuration belongs exclusively in the domain of the invariant measure.
Then, stronger inequalities from the Poincaré-type inequalities obtained here for the semigroup appear
to be satisfied, as is the modified logarithmic Sobolev inequality.

Furthermore, the extension of the results obtained in the current paper for compact neurons,
to the more general case of unbounded neurons is of particular interest.
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