Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators
Abstract
1. Introduction and Preliminaries
2. The Incomplete Pochhammer Ratio
3. The New Incomplete Gauss and Confluent Hypergeometric Functions
4. The Incomplete Appell’s Functions
5. Incomplete Riemann-Liouville Fractional Integral Operators
6. Generating Functions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 2014, 159, 589–602. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Aplications; Chapman and Hall: Dhahran, Saudi Arabia, 2001. [Google Scholar]
- Cho, N.E.; Srivastava, R. Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials. Appl. Math. Comput. 2014, 234, 277–285. [Google Scholar]
- Lin, S.; Srivastava, H.M.; Wong, M. Some Applications of Srivastava’s Theorem Involving a Certain Family of Generalized and Extended Hypergeometric Polyomials. Filomat 2015, 29, 1811–1819. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Özergin, E. Some generating relations for extended hypergeometric functions via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833. [Google Scholar] [CrossRef]
- Özergin, E.; Özarslan, M.A.; Altin, A. Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math. 2011, 235, 4601–4610. [Google Scholar]
- Özergin, E. Some Properties of Hypergeometric Functions. Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, Turkey, 2011. [Google Scholar]
- Srivastava, R. Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions. Appl. Math. Comput. 2014, 243, 132–137. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Chaudry, M.A.; Agarwal, R.P. The incomplete Pochhammer symbols and their applications to hypergeometric and related functions. Integral Transforms Spec. Funct. 2012, 23, 659–683. [Google Scholar] [CrossRef]
- Choi, J.; Parmar, R.K.; Chopra, P. The Incomplete Srivastava’s Triple Hypergeometric Functions gamma(H)(B) and Gamma(H)(B). Filomat 2016, 7, 1779–1787. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Ustaoglu, C. Incomplete Caputo fractional derivative operators. Adv. Differ. Equ. 2018, 2018, 209. [Google Scholar] [CrossRef]
- Çetinkaya, A. The incomplete second Appell hypergeometric functions. Appl. Math. Comput. 2013, 219, 8332–8337. [Google Scholar] [CrossRef]
- Sahai, V.; Verma, A. On an extension of the generalized Pochhammer symbol and its applications to hypergeometric functions. Asian-Eur. J. Math. 2016, 9, 1650064. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K.; Parmar, R.K. Some Families of the Incomplete H-Functions and the Incomplete H-Functions and Associated Integral Transforms and Operators of Fractional Calculus with Applications. Russ. J. Math. Phys. 2018, 25, 116–138. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Agarwal, R.; Jain, S. Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions. Math. Methods Appl. Sci. 2017, 40, 255–273. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Çetinkaya, A.; Kiymaz, O.I. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Appl. Math. Comput. 2014, 226, 484–491. [Google Scholar] [CrossRef]
- Srivastava, R.; Cho, N.E. Generating functions for a certain class of incomplete hypergeometric polynomials. Appl. Math. Comput. 2012, 219, 3219–3225. [Google Scholar] [CrossRef]
- Srivastava, R. Some properties of a family of incomplete hypergeometric functions. Russ. J. Math. Phys. 2013, 20, 121–128. [Google Scholar] [CrossRef]
- Srivastava, R. Some generalizations of Pochhammer’s symboland their associated families of hypergeometric functions and hypergeometric polynomials. Appl. Math. Inf. Sci. 2013, 7, 2195–2206. [Google Scholar] [CrossRef][Green Version]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differantial Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 2010, 63, 010801. [Google Scholar] [CrossRef]
- Sabatier, J.; Agrawal, O.P.; Tenreiro Machado, J.A. Advances in fractional calculus. In Theoretical Developments and Applications in Physics and Engineering; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Spanos, P.D.; Matteo, A.D.; Cheng, Y.; Pirrotta, A.; Li, J. Galerkin Scheme-Based Determination of Survival Probability of Oscillators with Fractional Derivative Element. J. Appl. Mech. 2016, 83, 121003. [Google Scholar] [CrossRef]
- Yang, X.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Elsevier/Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Lin, S.; Srivastava, H.M.; Yao, J.C. Some classes of of generating relations associated with a family of the generalized Gauss type hypergeometric functions. Appl. Math. Inform. Sci. 2015, 9, 1731–1738. [Google Scholar]
- Srivastava, H.M.; Parmar, R.K.; Chopra, P. A Class of Extended Fractional Derivative Operators and Associated Generating Relations Involving Hypergeometric Functions. Axioms 2012, 1, 238–258. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood: New York, NY, USA, 1984. [Google Scholar]
- Fernandez, A.; Ustaoğlu, C.; Özarslan, M.A. Analytical Development of Incomplete Riemann–Liouville Fractional Calculus. Unpublished work.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özarslan, M.A.; Ustaoğlu, C. Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators. Mathematics 2019, 7, 483. https://doi.org/10.3390/math7050483
Özarslan MA, Ustaoğlu C. Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators. Mathematics. 2019; 7(5):483. https://doi.org/10.3390/math7050483
Chicago/Turabian StyleÖzarslan, Mehmet Ali, and Ceren Ustaoğlu. 2019. "Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators" Mathematics 7, no. 5: 483. https://doi.org/10.3390/math7050483
APA StyleÖzarslan, M. A., & Ustaoğlu, C. (2019). Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators. Mathematics, 7(5), 483. https://doi.org/10.3390/math7050483