A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network
Abstract
:1. Introduction
2. Positivity and Boundedness
3. Lyapunov Stability Analysis
4. Existence of Hopf Bifurcation
5. Numerical Simulations
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Keshri, A.K.; Mishra, B.K.; Mallick, D.K. Library formation of known malicious attacks and their future variants. Int. J. Adv. Sci. Technol. 2016, 94, 1–12. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Keshri, A.K.; Mishra, B.K.; Mallick, D.K. A predator-prey model on the attacking behavior of malicious objects in wireless nanosensor networks. Nano Commun. Netw. 2018, 15, 1–16. [Google Scholar] [CrossRef]
- Cybercrime-Report. Available online: http://cyberseurityventures.com/2015-wp/wp-content/uploads/2017/10/2017-Cybercrime-Report.pdf (accessed on 23 April 2019).
- Khanh, N.H. Dynamics of a worm propagation model with quarantine in wireless sensor networks. Appl. Math. Inf. Sci. 2016, 10, 1739–1746. [Google Scholar] [CrossRef]
- Mishra, B.K.; Kershi, N. Mathematical model on the transmission of worms in wireless sensor network. Appl. Math. Model. 2013, 3, 4103–4111. [Google Scholar] [CrossRef]
- Mishra, B.K.; Pandey, S.K. Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 2011, 217, 8438–8446. [Google Scholar] [CrossRef]
- Xiao, X.; Fu, P.; Dou, C.S.; Li, Q.; Hu, G.W.; Xia, S.T. Design and analysis of SEIQR worm propagation model in mobile internet. Commun. Nonlinear Sci. Numer. Simul. 2017, 43, 341–350. [Google Scholar] [CrossRef]
- Keshri, N.; Mishra, B.K. Stability analysis of a predator-prey model in wireless sensor network. Int. J. Comput. Math. 2014, 91, 928–943. [Google Scholar]
- Yang, L.X.; Yang, X.F. The spread of computer viruses under the influence of removable storage devices. Appl. Math. Comput. 2012, 219, 3914–3922. [Google Scholar] [CrossRef]
- Muroya, Y.; Li, H.X.; Kuziya, T. On global stabiity of a nonresident computer virus model. Acta Math. Sci. 2014, 34B, 1427–1445. [Google Scholar] [CrossRef]
- Wang, F.W.; Zhang, Y.K.; Wang, C.G.; Ma, J.F. Stability analysis of an e-SEIAR model with point-to-group worm propagation. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 897–904. [Google Scholar] [CrossRef]
- Tang, C.Q.; Wu, Y.H. Global exponential stability of nonresident computer virus models. Nonlinear Anal. Real World Appl. 2017, 34, 149–158. [Google Scholar] [CrossRef]
- Fatima, U.; Ali, M.; Ahmed, N.; Rafiq, M. Numerical modeling of susceptible latent breaking-out quarantine computer virus epidemic dynamics. Heliyon 2018, 4, e00631. [Google Scholar] [CrossRef]
- Zhang, X.X.; Li, C.D. A novel computer virus model with generic nonlinear burst rate. In Proceedings of the International Workshop on Complex Systems and Networks, Doha, Qatar, 8–10 December 2017; pp. 325–329. [Google Scholar]
- Yang, X.F.; Liu, B.; Gan, C.Q. Global stability of an epidemic model of computer virus. Abstr. Appl. Anal. 2014, 2014, 456320. [Google Scholar] [CrossRef]
- Chen, L.J.; Hattaf, K.; Sun, J.T. Optimal control of a delayed SLBS computer virus model. Phys. Stat. Mech. Its Appl. 2015, 427, 244–250. [Google Scholar] [CrossRef]
- Muroya, Y.; Kuniya, T. Global stability of nonresident computer virus models. Math. Methods Appl. Sci. 2015, 38, 281–295. [Google Scholar] [CrossRef]
- Zhou, H.X.; Guo, W. A stochastic worm model. Telecommun. Syst. 2017, 64, 135–145. [Google Scholar] [CrossRef]
- Amador, J. The stochastic SIRA model for computer viruses. Appl. Math. Comput. 2014, 232, 1112–1124. [Google Scholar] [CrossRef]
- Tafazzoli, T.; Sadeghiyan, B.A. Stochastic model for the size of worm origin. Secur. Commun. Netw. 2016, 9, 1103–1118. [Google Scholar] [CrossRef]
- Jafarabadi, A.; Azgomi, M.A. A stochastic epidemiological model for the propagation of active worms considering the dynamicity of network topology. Peer-to-Peer Netw. Appl. 2015, 8, 1008–1022. [Google Scholar] [CrossRef]
- Zhang, C.M.; Zhao, Y.; Wu, Y.J.; Deng, S.W. A stochastic dynamic model of computer viruses. Discret. Dyn. Nat. Soc. 2012, 2012, 264874. [Google Scholar] [CrossRef]
- Keshri, N.; Gupta, A.; Mishra, B.K. Impact of reduced scale free network on wireless sensor network. Phys. Stat. Mech. Its Appl. 2016, 463, 236–245. [Google Scholar] [CrossRef]
- Hosseini, S.; Azgomi, M.A.; Rahmani, A.T. Malware propagation modeling considering software diversity andimmunization. J. Comput. Sci. 2016, 13, 49–67. [Google Scholar] [CrossRef]
- Zhang, C.M.; Huang, H.T. Optimal control strategy for a novel computer virus propagation model on scale-free networks. Phys. Stat. Mech. Its Appl. 2016, 451, 251–265. [Google Scholar] [CrossRef]
- Feng, L.P.; Song, L.P.; Zhao, Q.S.; Wang, H.B. Modeling and stability analysis of worm propagation in wireless sensor network. Math. Probl. Eng. 2015, 2015, 129598. [Google Scholar] [CrossRef]
- Srivastava, A.P.; Awasthi, S.; Ojha, R.P.; Srivastava, P.K.; Katiyar, S. Stability analysis of SIDR model for worm propagation in wireless sensor network. Indian J. Sci. Technol. 2016, 9, 1–5. [Google Scholar] [CrossRef]
- Nwokoye, C.H.; Ejiofor, W.E.; Orji, R. Investigating the effect of uniform random distribution of nodes in wireless sensor networks usingan epidemic worm model. In Proceedings of the CORI’16, Ibadan, Nigeria, 7–9 September 2016; pp. 58–63. [Google Scholar]
- Singh, A.; Awasthi, A.K.; Singh, K.; Srivastava, P.K. Modeling and analysis of worm propagation in wireless sensor networks. Wirel. Pers. Commun. 2018, 98, 2535–2551. [Google Scholar] [CrossRef]
- Ojha, R.P.; Sanyal, G.; Srivastava, P.K.; Sharma, K. Design and analysis of modified SIQRS model for performance study of wireless sensor network. Scalable Comput. 2017, 18, 229–241. [Google Scholar] [CrossRef]
- Mishra, B.K.; Tyagi, I. Defending against malicious threats in wireless sensor network: A mathematical model. Int. J. Inf. Technol. Comput. Sci. 2014, 6, 12–19. [Google Scholar] [CrossRef]
- Nwokoye, C.H.; Umeh, I.I. The SEIQR-V Model: On a More Accurate Analytical Characterization of Malicious Threat Defense. Int. J. Inf. Technol. Comput. Sci. 2017, 12, 28–37. [Google Scholar] [CrossRef]
- Keshri, N.; Mishra, B.K. Two time-delay dynamic model on the transmission of malicious signals in wireless sensor network. Chaos Solitons Fractals 2014, 68, 151–158. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Bi, D.J. Bifurcation analysis in a delayed computer virus model with the effect of external computers. Adv. Differ. Equat. 2015, 317, 13. [Google Scholar] [CrossRef]
- Zhao, T.; Bi, D.J. Hopf bifurcation of a computer virus spreading model in the network with limited anti-virus ability. Adv. Differ. Equat. 2017, 183, 16. [Google Scholar] [CrossRef]
- Wang, C.L.; Chai, S.X. Hopf bifurcation of an SEIRS epidemic model with delays and vertical transmission in the network. Adv. Differ. Equat. 2016, 10, 19. [Google Scholar] [CrossRef]
- Dai, Y.X.; Lin, Y.P.; Zhao, H.T.; Khalique, C.M. Global stability and Hopf bifurcation of a delayed computer virus propagation model with saturation incidence rate and temporary immunity. Int. J. Mod. Phys. 2016, 30, 1640009. [Google Scholar] [CrossRef]
- Xia, W.J.; Kundu, S.; Maitra, S. Dynamics of a delayed SEIQ epidemic model. Adv. Differ. Equat. 2018, 336, 21. [Google Scholar] [CrossRef]
- Hassard, B.D.; Kazarinoff, N.D.; Wan, Y.H. Theory and Applications of Hopf Bifurcation; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Ren, J.G.; Yang, X.F.; Yang, L.X.; Xu, Y.H.; Yang, F.Z. A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 2012, 45, 74–79. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Song, L.M. Dynamics of a delayed worm propagation model with quarantine. Adv. Differ. Equat. 2017, 155, 13. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Kumari, S. Bifurcation analysis of an e-epidemic model in wireless sensor network. Int. J. Comput. Math. 2018, 95, 1775–1805. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Kundu, S.; Wei, R. A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network. Mathematics 2019, 7, 396. https://doi.org/10.3390/math7050396
Zhang Z, Kundu S, Wei R. A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network. Mathematics. 2019; 7(5):396. https://doi.org/10.3390/math7050396
Chicago/Turabian StyleZhang, Zizhen, Soumen Kundu, and Ruibin Wei. 2019. "A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network" Mathematics 7, no. 5: 396. https://doi.org/10.3390/math7050396
APA StyleZhang, Z., Kundu, S., & Wei, R. (2019). A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network. Mathematics, 7(5), 396. https://doi.org/10.3390/math7050396