Next Article in Journal
Computing Certain Topological Indices of the Line Graphs of Subdivision Graphs of Some Rooted Product Graphs
Next Article in Special Issue
Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations
Previous Article in Journal
Area Properties of Strictly Convex Curves
Previous Article in Special Issue
Weak Partial b-Metric Spaces and Nadler’s Theorem
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Common Fixed Point Results for Rational (α,β)φ- Contractions in Complete Quasi Metric Spaces

1
Department of Mathematics, School of Science, University of Jordan, Amman 11942, Jordan
2
Department of Mathematics and General Courses, Prince Sultan University, Riyadh 11586, Saudi Arabia
3
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(5), 392; https://doi.org/10.3390/math7050392
Submission received: 4 April 2019 / Revised: 26 April 2019 / Accepted: 28 April 2019 / Published: 30 April 2019
(This article belongs to the Special Issue Applications in Theoretical and Computational Fixed Point Problems)

Abstract

:
The ω -distance mapping is one of the important tools that can be used to get new contractions in fixed point theory. The aim of this paper is to use the concept of modified ω -distance mapping to introduce the notion of rational ( α , β ) φ - m ω contraction. We utilize our new notion to construct and formulate many fixed point results for a pair of two mappings defined on a nonempty set A. Our results modify many existing known results. In addition, we support our work by an example.

1. Introduction

The Banach contraction principle [1] is one of the most famous results in the setting of fixed point theory. Subsequently, many generalizations and modifications were studied in many directions by many authors; see [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17].
Wilson [18] defined the quasi metric space as follows:
Definition 1.
[18] For A , let q : A × A 0 , + satisfy:
(i) 
q ( s 1 , s 2 ) = 0 if and only if s 1 = s 2 and
(ii) 
q ( s 1 , s 2 ) q ( s 1 , s 3 ) + q ( s 3 , s 2 ) for all s 1 , s 2 , s 3 A .
Then, we call q a quasi metric on A and ( A , q ) a quasi metric space.
Define q m : A × A [ 0 , + ) by:
q m ( j 1 , j 2 ) = max { q ( j 1 , j 2 ) , q ( j 2 , j 1 ) } .
Then, ( q m , A ) is a metric space.
From now on, we let ( A , q ) stand for a quasi metric space and ( j k ) stand for a sequence in ( A , q ) .
Definition 2.
[15,19] We say that a sequence ( j n ) in A converges to j A iff lim k q ( j k , j ) = lim k q ( j , j k ) = 0 .
Definition 3.
[19]
(i) 
We call ( j k ) left Cauchy if for each γ > 0 , there exists a positive integer i such that q ( j k , j l ) γ for all k l > i .
(ii) 
We call ( j k ) right Cauchy if for each γ > 0 , there exists a positive integer i such that q ( j k , j l ) γ for all l k > i .
Definition 4.
[15,19] We call ( j k ) Cauchy if for each γ > 0 , there exists a positive integer i such that q ( j k , j l ) γ for all l , k > i .
Note that ( j k ) is Cauchy if ( j k ) is a right and left Cauchy.
Definition 5.
[19] ( A , q ) is complete iff every Cauchy sequence in A is convergent.
Alegre and Marin [20] introduced the notion of modified ω -distance mappings as follows:
Definition 6.
[20] A function p : A × A 0 , + is called modified ω-distance (mω-distance) on ( A , q ) if p satisfies:
(W1) 
p ( c 1 , c 2 ) p ( c 1 , c 3 ) + p ( c 3 , c 2 ) for all c 1 , c 2 , c 3 A ,
(W2) 
for any c A , p ( c , . ) : A 0 , + is lower semi-continuous, and
(mW3) 
for each ε > 0 , there exists μ > 0 such that if p ( c 1 , c 2 ) μ and p ( c 2 , c 3 ) μ , then q ( c 1 , c 3 ) ε for all c 1 , c 2 , c 3 A .
Definition 7.
[20] An mω-distance function p : A × A 0 , is called strong mω-distance on ( A , q ) if:
(mW2) 
for any c A , then p ( . , c ) : A 0 , is lower semi-continuous.
Remark 1.
[20] Every quasi metric q on A is an mω-distance.
Lemma 1.
[7] Let p be an mω-distance on A , q . Let j k be a sequence in A and ζ k , ξ k be two nonnegative sequences converging to zero. Then, we have:
(i) 
If p j k , j l ζ k for any k , l N with l k , then j k is right Cauchy.
(ii) 
If p j k , j l ξ l for any k , l N with k l , then j k is left Cauchy.
Remark 2.
[7] From Lemma 1, we conclude that if lim k , l p ( j k , j l ) = 0 , then j k is Cauchy in A , q .
Definition 8.
[21] A function φ : 0 , 0 , is called a c-comparison if φ satisfies:
(i) 
φ is nondecreasing and
(ii) 
k = 0 φ k ( μ ) < for all μ 0 .
Remark 3.
If φ is a c-comparison, then φ ( μ ) < μ μ > 0 and φ ( 0 ) = 0 .
In the rest of this paper, by α and β , we mean functions from A × A into [ 0 , + ) .
Definition 9.
[22] A mapping h 1 : A A is α-admissible if for i , j A ,
α ( i , j ) 1 α ( h 1 i , h 1 j ) 1 .
Definition 10.
[23] A mapping h 1 : A A is called triangular α-admissible if:
(i) 
h 1 is α-admissible,
(ii) 
For all i , j , k A ,
α ( i , j ) 1 and α ( j , k ) 1 α ( i , k ) 1 .
Definition 11.
[9] For the two mappings h 1 , h 2 : A A , we say that ( h 1 , h 2 ) is α-admissible if for all i , j A ,
α ( i , j ) 1 α ( h 1 i , h 2 j ) 1 and α ( h 2 i , h 1 j ) 1 .
Definition 12.
[24] For the two mappings h 1 , h 2 : A A , we say that ( h 1 , h 2 ) is α , β -admissible if for all i , j A ,
α ( i , j ) β ( i , j ) α ( h 1 i , h 2 j ) β ( h 1 i , h 2 j ) and α ( h 2 i , h 1 j ) β ( h 2 i , h 1 j ) .
For more work on contractions involving admissible conditions, see [25,26,27].

2. Main Results

We start with the following definition.
Definition 13.
For the two mappings h 1 , h 2 : A A , we call the pair ( h 1 , h 2 ) α , β -triangular admissible if:
(i) 
( h 1 , h 2 ) is α , β -admissible, and
(ii) 
if s 1 , s 2 , s 3 A , α ( s 1 , s 2 ) β ( s 1 , s 2 ) , and α ( s 2 , s 3 ) β ( s 2 , s 3 ) , then α ( s 1 , s 3 ) β ( s 1 , s 3 ) .
Example 1.
Let A = 1 , 1 . Define h 1 , h 2 : A A by h 1 i = | i | 1 + i , h 2 i = i . Furthermore, define α , β : A × A 0 , via α ( i , j ) = e i + j and β ( i , j ) = e i + j 2 . Then, ( h 1 , h 2 ) is α , β -triangular admissible.
Proof. 
To show that ( h 1 , h 2 ) is α , β -admissible, given i , j A such that α ( i , j ) β ( i , j ) , then j [ 0 , 1 ] . Note that:
α ( h 1 i , h 2 j ) = α i 1 + i , j = e i 1 + i + j e i 1 + i + j 2 = β ( h 1 i , h 2 j )
and:
α ( h 2 i , h 1 j ) = α i , j 1 + j = e i + j 1 + j e 1 + ( j 1 + j ) 2 = β ( h 2 i , h 1 j ) .
Now, given i , j , k A such that α ( i , j ) β ( i , j ) and α ( j , k ) β ( j , k ) , then j , k [ 0 , 1 ] .
Therefore, α ( i , k ) = e i + k e i + k 2 = β ( i , k ) .
Let h 1 , h 2 : A A be two mappings. By starting with the initial point j 0 A , we define the sequence ( j n ) in A by h 1 j 2 n = j 2 n + 1 and h 2 j 2 n + 1 = j 2 n + 2 . To facilitate our work, we call the above sequence ( j n ) an ( h 1 , h 2 ) -sequence with initial point j 0 .
Lemma 2.
For the mappings h 1 , h 2 : A A , we assume the following conditions:
1. 
( h 1 , h 2 ) is α , β -triangular admissible and
2. 
there exists j 0 A such that α ( h 1 j 0 , h 2 h 1 j 0 ) β ( h 1 j 0 , h 2 h 1 j 0 ) and α ( h 2 h 1 j 0 , h 1 j 0 ) β ( h 2 h 1 j 0 , h 1 j 0 ) .
Then, the ( h 1 , h 2 ) -sequence ( j n ) with initial point j 0 , satisfies α ( j n , j m ) β ( j n , j m ) for all n , m N .
Proof. 
For j 1 = h 1 j 0 and j 2 = h 2 j 1 , we get that:
α ( j 1 , j 2 ) β ( j 1 , j 2 ) and α ( j 2 , j 1 ) β ( j 2 , j 1 ) .
Since the pair ( h 1 , h 2 ) is α , β -triangular admissible, we have:
α ( h 2 j 1 , h 1 j 2 ) β ( h 2 j 1 , h 1 j 2 ) and α ( h 1 j 2 , h 2 j 1 ) β ( h 1 j 2 , h 2 j 1 ) .
Now, for j 3 = h 1 j 2 , we have:
α ( j 2 , j 3 ) β ( j 2 , j 3 ) and α ( j 3 , j 2 ) β ( j 3 , j 2 ) ,
Repeating the same process, we conclude that ( j n ) satisfies:
α ( j n , j n + 1 ) β ( j n , j n + 1 )
and:
α ( j n + 1 , j n ) β ( j n + 1 , j n ) .
By the same process, we can prove that:
α ( j n + 1 , j n + 2 ) β ( j n + 1 , j n + 2 ) .
Therefore,
α ( j n , j n + 2 ) β ( j n , j n + 2 ) .
Hence, for m > n with m = n + t for some t N , we get that:
α ( j n , j m ) = α ( j n , j n + t ) β ( j n , j n + t ) = β ( j n , j m ) .
From the definition of α , β -triangular admissible and Equations (1) and (2), we get that:
α ( j n , j m ) β ( j n , j m ) for all n , m N .
Next, we introduce the concept of the rational ( α , β ) φ - m ω contraction.
Definition 14.
Let p be the modified ω-distance equipped on ( A , q ) , and let h 1 , h 2 : A A be two self-mappings. Then, we call ( h 1 , h 2 ) a rational ( α , β ) φ - m ω contraction if there exists a c-comparison function φ such that for all s 1 , s 2 A with α ( s 1 , s 2 ) β ( s 1 , s 2 ) , then we have:
p ( h 1 s 1 , h 2 s 2 ) φ max p ( s 1 , h 1 s 1 ) , p ( s 2 , h 2 s 2 ) , p ( s 1 , h 1 s 1 ) p ( s 2 , h 2 s 2 ) 1 + p ( s 1 , s 2 ) ,
and:
p ( h 2 s 1 , h 1 s 2 ) φ max p ( s 1 , h 2 s 1 ) , p ( s 2 , h 1 s 2 ) , p ( s 1 , h 2 s 1 ) p ( s 2 , h 1 s 2 ) 1 + p ( s 2 , s 1 ) .
For simplicity, we mean by N * the set of all non-negative integers.
Lemma 3.
Let p be the modified ω-distance equipped on ( A , q ) . Let h 1 , h 2 : A A be mappings and φ be a c-comparison. Suppose the following:
(i) 
( h 1 , h 2 ) is α , β -triangular admissible,
(ii) 
( h 1 , h 2 ) is a rational ( α , β ) φ - m ω contraction, and
(iii) 
there exists j 0 A such that:
α ( h 1 j 0 , h 2 h 1 j 0 ) β ( h 1 j 0 , h 2 h 1 j 0 ) and α ( h 2 h 1 j 0 , h 1 j 0 ) β ( h 2 h 1 j 0 , h 1 j 0 ) .
If there exists k N * such that p ( j k , j k + 1 ) = 0 or p ( j k + 1 , j k ) = 0 , then j k is a common fixed point of h 1 and h 2 , where ( j n ) is the ( h 1 , h 2 ) -sequence with initial point j 0 .
Moreover, if z A is a common fixed point of h 1 and h 2 , then p ( z , z ) = 0 .
Proof. 
As in Lemma 2, we have α ( j n , j m ) β ( j n , j m ) n , m N * .
Assume that p ( j k , j k + 1 ) = 0 . If k is even, then k = 2 t for some t N * . Therefore, we have p ( j 2 t , j 2 t + 1 ) = 0 .
Since ( h 1 , h 2 ) is a rational ( α , β ) φ - m ω contraction, we have:
p ( j 2 t + 1 , j 2 t + 2 ) = p ( h 1 j 2 t , h 2 j 2 t + 1 ) φ max p ( j 2 t , h 1 j 2 t ) , p ( j 2 t + 1 , h 1 j 2 t + 1 ) , p ( j 2 t , h 1 j 2 t ) p ( j 2 t + 1 , h 2 j 2 t + 1 ) 1 + p ( j 2 t , j 2 t + 1 ) = φ max p ( j 2 t , j 2 t + 1 ) , p ( j 2 t + 1 , j 2 t + 2 ) , p ( j 2 t , j 2 t + 1 ) p ( j 2 t + 1 , j 2 t + 2 ) 1 + p ( j 2 t , j 2 t + 1 ) = φ max { p ( j 2 t , j 2 t + 1 ) , p ( j 2 t + 1 , j 2 t + 2 ) } .
Hence, p ( j 2 t + 1 , j 2 t + 2 ) φ p ( j 2 t + 1 , j 2 t + 2 ) .
Using the properties of the c-comparison function φ , we get:
p ( j 2 t + 1 , j 2 t + 2 ) = 0 .
By ( W 1 ) of Definition 6, we get:
p ( j 2 t , j 2 t + 2 ) = 0 .
Furthermore, using ( m W 3 ) of Definition 6, we get:
q ( j 2 t , j 2 t + 2 ) = 0 .
Therefore, j 2 t = j 2 t + 2 .
Now,
p ( j 2 t + 2 , j 2 t + 1 ) = p ( h 2 j 2 t + 1 , h 1 j 2 t ) φ max p ( j 2 t + 1 , j 2 t + 2 ) , p ( j 2 t , j 2 t + 1 ) , p ( j 2 t + 1 , j 2 t + 2 ) p ( j 2 t , j 2 t + 1 ) 1 + p ( j 2 t , j 2 t + 1 ) = φ max { p ( j 2 t + 1 , j 2 t + 2 ) , p ( j 2 t , j 2 t + 1 ) } .
Therefore,
p ( j 2 t + 2 , j 2 t + 1 ) = 0 .
Using Equations (8), (9), and (11), we get q ( j 2 t , j 2 t + 1 ) = 0 , and so, j k is a common fixed point of h 1 and h 2 .
Using the same process, we can show that j k is a common fixed point of h 1 and h 2 whenever k is odd.
In a similar manner, we can show that j k is a common fixed point of h 1 and h 2 if p ( j k + 1 , j k ) = 0 .
Now, assume that z A is a common fixed point of h 1 and h 2 .
Since ( h 1 , h 2 ) is a rational ( α , β ) φ - m ω contraction, we have:
p ( z , z ) = p ( h 2 z , h 1 z ) φ max p ( z , z ) , p ( z , z ) , p ( z , z ) p ( z , z ) 1 + p ( z , z ) = φ p ( z , z ) .
Hence, p ( z , z ) = 0 .
Now, we introduce our main result:
Theorem 1.
Let p be a modified ω-distance equipped on ( A , q ) . Let h 1 , h 2 : A A be two mappings and φ be a c-comparison function. Assume the following hypotheses:
1. 
h 1 and h 2 are continuous,
2. 
( h 1 , h 2 ) is α , β -triangular admissible,
3. 
( h 1 , h 2 ) is a rational ( α , β ) φ - m ω contraction, and
4. 
there exists j 0 A such that:
α ( h 1 j 0 , h 2 h 1 j 0 ) β ( h 1 j 0 , h 2 h 1 j 0 ) a n d α ( h 2 h 1 j 0 , h 1 j 0 ) β ( h 2 h 1 j 0 , h 1 j 0 ) .
Then, the ( h 1 , h 2 ) -sequence ( j n ) with initial point j 0 converges to a unique common fixed point of h 1 and h 2 in A.
Proof. 
If there exists n N * such that p ( j n , j n + 1 ) = 0 or p ( j n + 1 , j n ) = 0 , then by Lemma 3, j n is a common fixed point of h 1 and h 2 . Therefore, we can assume that for all n N * , p ( j n , j n + 1 ) 0 and p ( j n + 1 , j n ) 0 .
If n is odd, then n = 2 s + 1 for some s N * .
Since the pair ( h 1 , h 2 ) is a rational ( α , β ) φ - m ω contraction, we have:
p ( j 2 s + 1 , j 2 s + 2 ) = p ( h 1 j 2 s , h 2 j 2 s + 1 ) φ max p ( j 2 s , h 1 j 2 s ) , p ( j 2 s + 1 , h 1 j 2 s + 1 ) , p ( j 2 s , h 1 j 2 s ) p ( j 2 s + 1 , h 2 j 2 s + 1 ) 1 + p ( j 2 s , j 2 s + 1 ) = φ max p ( j 2 s , j 2 s + 1 ) , p ( j 2 s + 1 , j 2 s + 2 ) , p ( j 2 s , j 2 s + 1 ) p ( j 2 s + 1 , j 2 s + 2 ) 1 + p ( j 2 s , j 2 s + 1 ) = φ max { p ( j 2 s , j 2 s + 1 ) , p ( j 2 s + 1 , j 2 s + 2 ) } = φ p ( j 2 s , j 2 s + 1 ) .
Furthermore, we have:
p ( j 2 s + 2 , j 2 s + 1 ) = p ( h 2 j 2 s + 1 , h 1 j 2 s ) φ max p ( j 2 s + 1 , h 2 j 2 s + 1 ) , p ( j 2 s , h 1 j 2 s ) , p ( j 2 s + 1 , h 2 j 2 s + 1 ) p ( j 2 s , h 1 j 2 s ) 1 + p ( j 2 s , j 2 s + 1 ) = φ max p ( j 2 s + 1 , j 2 s + 2 ) , p ( j 2 s , j 2 s + 1 ) , p ( j 2 s + 1 , j 2 s + 2 ) p ( j 2 s , j 2 s + 1 ) 1 + p ( j 2 s , j 2 s + 1 ) = φ max { p ( j 2 s + 1 , j 2 s + 2 ) , p ( j 2 s , j 2 s + 1 ) } = φ p ( j 2 s , j 2 s + 1 ) .
Therefore, we have:
max { p ( j 2 s + 1 , j 2 s + 2 ) , p ( j 2 s + 2 , j 2 s + 1 ) } φ p ( j 2 s , j 2 s + 1 ) .
Furthermore, if n N * is even, we have:
max { p ( j 2 s + 1 , j 2 s + 2 ) , p ( j 2 s + 2 , j 2 s + 1 ) } φ p ( j 2 s , j 2 s + 1 ) .
Therefore, for all n N * , we get:
max { p ( j n , j n + 1 ) , p ( j n + 1 , j n ) } φ p ( j n 1 , j n ) .
Thus,
p ( j n , j n + 1 ) φ p ( j n 1 , j n ) φ 2 p ( j n 2 , j n 1 ) φ n p ( j 0 , j 1 ) .
Furthermore, we have:
p ( j n + 1 , j n ) φ n p ( j 0 , j 1 ) .
Now, we claim that ( j n ) is Cauchy.
To show that ( j n ) is a left Cauchy sequence, let n , m N with n > m .
Using Equation (17) and ( W 1 ) of Definition 6, we have:
p ( j n , j m ) p ( j n , j n 1 ) + p ( j n 1 , j n 2 ) + + p ( j m + 1 , j m ) φ p ( j n 2 , j n 1 ) + φ p ( j n 3 , j n 2 ) + + φ p ( j m 1 , j m ) = k = m n 1 φ p ( j k 1 , j k ) k = m n 1 φ k p ( j 0 , j 1 ) .
Since φ is a c-comparison function, then k = m φ k p ( j 0 , j 1 ) is convergent. Thus, for any ϵ > 0 , there is N N such that:
k = m φ k p ( j 0 , j 1 ) < ϵ for all m > N .
Hence, for n > m N , we have:
p ( j n , j m ) n 1 k = m φ k p ( j 0 , j 1 ) k = m φ k p ( j 0 , j 1 ) < ϵ .
By Lemma 1, ( j n ) is a left Cauchy sequence.
To show that ( j n ) is a right Cauchy sequence, let n , m N with n < m . Using Equation (16) and (W1) of Definition 6, we get:
p ( j n , j m ) p ( j n , j n + 1 ) + p ( j n + 1 , j n + 2 ) + + p ( j m 1 , j m ) = k = n m 1 p ( j k , j k + 1 ) k = n m 1 φ k p ( j 0 , j 1 ) .
Hence, for m > n N , we have:
p ( j n , j m ) m 1 k = n φ k p ( j 0 , j 1 ) k = n φ k p ( j 0 , j 1 ) < ϵ .
By Lemma 1, ( j n ) is a right Cauchy sequence.
Hence, ( j n ) is Cauchy. The completeness property of ( A , q ) implies j * A , and so:
lim n q ( j 2 n , j * ) = lim n q ( j * , j 2 n ) = 0 .
Since h 1 is continuous, we have:
lim n q ( h 1 j 2 n , h 1 j * ) = lim n q ( h 1 j * , h 1 j 2 n ) lim n q ( j 2 n + 1 , h 1 j * ) = lim n q ( h 1 j * , j 2 n + 1 ) = 0 .
By uniqueness of the limit, we get j * = h 1 j * . In a similar manner, we can show that j * = h 2 j * . Consequently, j * is a common fixed point of h 1 and h 2 .
To prove the uniqueness of the common fixed point of h 1 and h 2 , if z A is a common fixed point of h 1 and h 2 , then by Lemma 3, we get that p ( z , z ) = 0 .
Assume there exists v A such that v = h 2 v = h 1 v .
Now,
p ( v , z ) = p ( h 1 v , h 2 z ) φ max p ( v , h 1 v ) , p ( z , h 2 z ) , p ( v , h 1 v ) p ( z , h 2 z ) 1 + p ( v , z ) = φ max p ( v , v ) , p ( z , z ) , p ( v , v ) p ( z , z ) 1 + p ( v , z ) = 0 .
Hence, p ( v , z ) = 0 . Since p z , z = 0 , then by using ( m W 3 ) of Definition 6, we get q v , z = 0 , and so, v = z .□
Next, we introduce an example to show the usability of our work:
Example 2.
Let A = R be the set of real numbers.
Define α , β : A × A 0 , as follows:
For all s 1 , s 2 A , let α ( s 1 , s 2 ) = e | s 1 | + | s 2 | and β ( s 1 , s 2 ) = e | s 1 + s 2 | .
Furthermore, define h 1 , h 2 on A as follows: h 1 ( a ) = 1 2 a and h 2 ( b ) = 1 3 b .
Define q : A × A 0 , via:
q ( s 1 , s 2 ) = 0 i f s 1 = s 2 , | s 1 | + 3 2 | s 2 | i f s 1 s 2 .
Define p : A × A 0 , via p ( s 1 , s 2 ) = 2 | s 1 | + 3 | s 2 | . Furthermore, define φ : 0 , 0 , via φ ( μ ) = 6 7 μ .
Then:
(1) 
( A , q ) is a complete quasi metric space,
(2) 
( A , p ) is the mω-distance on q ,
(3) 
φ is a c-comparison function,
(4) 
S and T are continuous,
(5) 
( S , T ) is α , β -triangular admissible,
(6) 
( S , T ) is a rational ( α , β ) φ - m ω contraction.
Proof. 
The proofs of (1)–(4) are obvious.
Now, we prove (5): Given s 1 , s 2 , s 3 A , then:
α ( s 1 , s 2 ) = e | s 1 | + | s 2 | e | s 1 + s 2 | = β ( s 1 , s 2 ) .
Therefore,
α ( h 1 s 1 , h 2 s 2 ) = e 1 2 | s 1 | + 1 3 | s 1 | e | 1 2 s 1 + 1 3 s 2 | = β ( h 1 s 1 , h 2 s 2 )
and:
α ( h 2 s 1 , h 1 s 2 ) = e 1 3 | s 1 | + 1 2 | s 2 | e | 1 3 s 1 + 1 2 s 2 | = β ( h 2 s 1 , h 1 s 2 ) .
Furthermore, if α ( s 1 , s 2 ) β ( s 1 , s 2 ) and α ( s 2 , s 3 ) β ( s 2 , s 3 ) , then α ( s 1 , s 3 ) β ( s 1 , s 3 ) .
To prove (6), given s 1 , s 2 A with α ( s 1 , s 2 ) β ( s 1 , s 2 ) , then, we get that:
p ( h 1 s 1 , h 2 s 2 ) = | s 1 | + | s 2 | 6 7 max 7 2 s 1 , 3 s 2 = 6 7 max p ( s 1 , h 1 s 1 ) , p ( s 2 , h 2 s 2 ) = 6 7 max p ( s 1 , 1 2 s 1 ) , p ( s 2 , 1 3 s 2 ) 6 7 max p ( s 1 , h 1 s 1 ) , p ( s 2 , h 2 s 2 ) , p ( s 1 , h 1 s 1 ) p ( s 2 , h 2 s 2 ) 1 + p ( s 1 , s 2 ) = φ max p ( s 1 , h 1 s 1 ) , p ( s 2 , h 2 s 2 ) , p ( s 1 , h 1 s 1 ) p ( s 2 , h 2 s 2 ) 1 + p ( s 1 , s 2 ) .
We divide the proof of the second inequality of Definition 14 into two cases.
Case (1): If | s 1 | | s 2 | , then we get that:
p ( h 2 s 1 , h 1 s 2 ) = 2 3 s 1 + 3 2 s 2 13 6 s 2 6 7 7 2 s 2 6 7 max 3 s 1 , 7 2 s 2 = 6 7 max p ( s 1 , h 2 s 1 ) , p ( s 2 , h 1 s 2 ) 6 7 max p ( s 1 , h 2 s 1 ) , p ( s 2 , h 1 s 2 ) , p ( s 1 , h 2 s 1 ) p ( s 2 , h 1 s 2 ) 1 + p ( s 2 , s 1 ) = φ max p ( s 1 , h 2 s 1 ) , p ( s 2 , h 1 s 2 ) , p ( s 1 , h 2 s 1 ) p ( s 2 , h 1 s 2 ) 1 + p ( s 2 , s 1 ) .
Case (2): If | s 1 | | s 2 | , then we get that:
p ( h 2 s 1 , h 1 s 2 ) = 2 3 s 1 + 3 2 s 2 13 6 s 1 6 7 ( 3 s 1 ) 6 7 max 3 s 1 , 7 2 s 2 = 6 7 max p ( s 1 , h 2 s 1 ) , p ( s 2 , h 1 s 2 ) 6 7 max p ( s 1 , h 2 s 1 ) , p ( s 2 , h 1 s 2 ) , p ( s 1 , h 2 s 1 ) p ( s 2 , h 1 s 2 ) 1 + p ( s 2 , s 1 ) = φ max p ( s 1 , h 2 s 1 ) , p ( s 2 , h 1 s 2 ) , p ( s 1 , h 2 s 1 ) p ( s 2 , h 1 s 2 ) 1 + p ( s 2 , s 1 ) .
Therefore, in each case, we get that:
p ( h 2 s 1 , h 1 s 2 ) φ max p ( s 1 , h 2 s 1 ) , p ( s 2 , h 1 s 2 ) , p ( s 1 , h 1 s 1 ) p ( s 2 , h 1 s 2 ) 1 + p ( s 2 , s 1 ) .
Hence, the pair ( h 1 , h 2 ) is a rational ( α , β ) φ - m ω contraction. Using Theorem 1, we get that h 1 and h 2 have a unique common fixed point.□
Note that for the ( h 1 , h 2 ) -sequence ( j n ) with initial point j 0 , if h 2 is the identity function, then ( j n ) returns to the Picard iteration sequence, i.e., h 1 j n = j n + 1 for n N * . Therefore, we can give the following definition:
Definition 15.
We call ϱ : A A an α , β -triangular admissible mapping if:
(i) 
α ( j , i ) β ( j , i ) α ( ϱ j , i ) β ( ϱ j , i ) & α ( j , ϱ i ) β ( j , ϱ i ) , and
(ii) 
if i , j , k A , α ( i , j ) β ( i , j ) , and α ( j . k ) β ( j , k ) , then α ( i , k ) β ( i , k ) .
Definition 16.
Let p be modified ω-distance equipped on ( A , q ) . Then, we call ϱ : A A a rational ( α , β ) φ - m ω contraction if there exists a c-comparison function φ such that if s 1 , s 2 A and α ( s 1 , s 2 ) β ( s 1 , s 2 ) , then:
p ( ϱ s 1 , s 2 ) φ max p ( s 2 , s 2 ) , p ( s 1 , ϱ s 1 ) , p ( s 2 , s 2 ) p ( s 1 , ϱ s 1 ) 1 + p ( s 1 , s 2 ) ,
and:
p ( s 1 , ϱ s 2 ) φ max p ( s 1 , s 1 ) , p ( s 2 , ϱ s 2 ) , p ( s 1 , s 1 ) p ( s 2 , ϱ s 2 ) 1 + p ( s 2 , s 1 ) .
Therefore, according to these definitions, we can derive the following results as consequences of our previous results:
Lemma 4.
For the map ϱ : A A , we assume the following conditions:
1. 
ϱ is α , β -triangular admissible and
2. 
there exists j 0 A such that α ( ϱ j 0 , ϱ j 0 ) β ( ϱ j 0 , ϱ j 0 ) and α ( ϱ j 0 , ϱ j 0 ) β ( ϱ j 0 , ϱ j 0 ) .
Then, for the Picard sequence ( j n ) with initial point j 0 , we have α ( j n , j m ) β ( j n , j m ) for all n , m N .
Lemma 5.
Let p be the modified ω-distance equipped on ( A , q ) . Let ϱ : A A be a mapping and φ be a c-comparison. Suppose the following:
(i) 
ϱ is α , β -triangular admissible,
(ii) 
ϱ is a rational ( α , β ) φ - m ω contraction, and
(iii) 
there exists j 0 A such that:
α ( ϱ j 0 , ϱ j 0 ) β ( ϱ j 0 , ϱ j 0 ) .
If there exists k N * such that p ( j k , j k + 1 ) = 0 or p ( j k + 1 , j k ) = 0 , then j k is a fixed point of ϱ, where ( j n ) is the Picard sequence generated by ϱ with initial point j 0 .
Moreover, if z * A is a fixed point of ϱ, then p ( z * , z * ) = 0 .
Theorem 2.
Let p be the modified ω-distance equipped on ( A , q ) . Let ϱ : A A be a mapping and φ be a c-comparison function. Assume the following hypotheses:
1. 
ϱ is continuous,
2. 
ϱ is α , β -triangular admissible,
3. 
ϱ is a rational ( α , β ) φ - m ω contraction, and
4. 
there exists j 0 A such that:
α ( ϱ j 0 , ϱ j 0 ) β ( ϱ j 0 , ϱ j 0 ) .
Then, the Picard sequence ( j n ) generated by ϱ with initial point j 0 converges to a unique fixed point of ϱ in A.

Author Contributions

All authors contributed equally and significantly to writing this article. All authors read and approved the final manuscript.

Funding

This research was funded by Prince Sultan University for funding this work through research group NAMAM, Group Number RG-DES-2017-01-17.

Acknowledgments

The authors would like to thank the anonymous reviewers and Editor for their valuable remarks on our paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les, Opération dans les ensembles abstraits et leur application aux equations integral. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Karapinar, E. Weak ϕ-contraction on partial metric spaces. Comput. Anal. Appl. 2012, 14, 206–210. [Google Scholar]
  3. Kannan, R. Some results on fixed point. Bull. Calcutta Math. Soi. 1968, 60, 71–76. [Google Scholar]
  4. Shatanawi, W. Fixed and common fixed point theoerms in frame of quasi metric spaces based on ultra distance functions. Nonlinear Anal. Model. Control 2018, 23, 724–748. [Google Scholar] [CrossRef]
  5. Shatanawi, W.; Noorani, M.S.; Alsamir, H.; Bataihah, A. Fixed and common fixed point theorems in partially ordered quasi metric spaces. J. Math. Comput. Sci. 2012, 16, 516–528. [Google Scholar] [CrossRef]
  6. Karapinar, E. Best proximity points of cyclic mappings. Appl. Math. Lett. 2012, 25, 1761–1766. [Google Scholar] [CrossRef] [Green Version]
  7. Nuseir, I.; Shatanawi, W.; Abu-Irwaq, I.; Bataihah, A. Nonlinear contraction and fixed point theorems with modified ω-distance mappings in complete quasi metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 5342–5350. [Google Scholar] [CrossRef]
  8. Karapinar, E.; Erhan, I.M. Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24, 1900–1904. [Google Scholar] [CrossRef]
  9. Abdeljawad, T. Meir-Keeler α-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. 2013, 10, 1–10. [Google Scholar]
  10. Abodayeh, K.; Shatanawi, W.; Bataihah, A.; Ansari, A.H. Some fixed point and common fixed point results through Ω—distance under nonlinear contraction. Gazi Univ. J. Sci. 2017, 30, 293–302. [Google Scholar]
  11. Abodayeh, K.; Batiahah, A.; Shatanawi, W. Generalized Ω-distance mappings and some fixed point theorems. Politehn Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 223–232. [Google Scholar]
  12. Shatanawi, W.; Postolache, M. Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013. [Google Scholar] [CrossRef]
  13. Karapinar, E. A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 2011, 12, 185–191. [Google Scholar] [CrossRef]
  14. Aydi, H.; Karapinar, E.; Shatanawi, W. Tripled coincidence point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012. [Google Scholar] [CrossRef]
  15. Aydi, H.; Jellali, M.; Karapınar, E. On fixed point results for α-implicit contractions in quasi metric spaces and consequences. Nonlinear Anal. Model. Control 2016, 21, 40–56. [Google Scholar] [CrossRef]
  16. Shatanawi, W.; Pitea, A. Some coupled fixed point theorems in quasi-partial metric spaces. Fixed Point Theory Appl. 2013. [Google Scholar] [CrossRef]
  17. Aydi, H.; Vetro, C.; Karapinar, E. Meir-Keeler type contractions for tripled fixed points. Acta Math. Scientia 2012, 32, 2119–2130. [Google Scholar] [CrossRef]
  18. Wilson, W.A. On quasi-metric spaces. Amer J. Math. 1931, 53, 675–684. [Google Scholar] [CrossRef]
  19. Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012. [Google Scholar] [CrossRef]
  20. Alegre, C.; Marin, J. Modified ω-distance on quasi metric spaces and fixed point theorems on complete quasi metric spaces. Topol. Appl. 2106, 203, 120–129. [Google Scholar] [CrossRef]
  21. Berinde, V. Generalized Contractions and Applications; Editura Cub Press: Dolj, Romania, 1997; Volume 22. (In Romanian) [Google Scholar]
  22. Samet, B.; Vetro, C.; Vetro, B. Fixed point theorems for a αψ-contractive type mappings. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
  23. Karapinar, E.; Kumam, P.; Salimi, P. On αψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013. [Google Scholar] [CrossRef]
  24. Shatanawi, W. Common Fixed Points for Mappings under Contractive Conditions of (α,β,ψ)-Admissibility Type. Mathematics 2018, 6, 261. [Google Scholar] [CrossRef]
  25. Hussain, N.; Karapinar, E.; Salimi, P.; Akbar, F. α-admissible mappings and related fixed point theorems. J. Inequal. Appl. 2013. [Google Scholar] [CrossRef]
  26. Abodayeh, K.; Shatanawi, W.; Turkoglu, D. Some fixed point theorems in quasi-metric spaces under quasi weak conractions. Glob. J. Pure Appli. Math. 2016, 12, 4771–4780. [Google Scholar]
  27. Bilgili, N.; Karapinar, E.; Samet, B. Generalized α-ψ contractive mappings in quasi-metric spaces and related fixed-point theorems. J. Inequal. Appl. 2014. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Qawasmeh, T.; Shatanawi, W.; Bataihah, A.; Tallafha, A. Common Fixed Point Results for Rational (α,β)φ- Contractions in Complete Quasi Metric Spaces. Mathematics 2019, 7, 392. https://doi.org/10.3390/math7050392

AMA Style

Qawasmeh T, Shatanawi W, Bataihah A, Tallafha A. Common Fixed Point Results for Rational (α,β)φ- Contractions in Complete Quasi Metric Spaces. Mathematics. 2019; 7(5):392. https://doi.org/10.3390/math7050392

Chicago/Turabian Style

Qawasmeh, Tariq, Wasfi Shatanawi, Anwar Bataihah, and Abdalla Tallafha. 2019. "Common Fixed Point Results for Rational (α,β)φ- Contractions in Complete Quasi Metric Spaces" Mathematics 7, no. 5: 392. https://doi.org/10.3390/math7050392

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop