On Opial’s Type Integral Inequalities
Abstract
:1. Introduction and Statement of Results
2. Proofs of Main Results
Funding
Conflicts of Interest
References
- Opial, Z. Sur une inégalité. Ann. Polon. Math. 1960, 8, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Pang, P.Y.H. Opial Inequalities with Applications in Differential and Difference Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Das, K.M. An inequality similar to Opial’s inequality. Proc. Am. Math. Soc. 1969, 22, 258–261. [Google Scholar]
- Pachpatte, B.G. On some new generalizations of Opial inequalit. Demonstr. Math. 1986, 19, 281–291. [Google Scholar]
- Agarwal, R.P.; Lakshmikantham, V. Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations; World Scientific: Singapore, 1993. [Google Scholar]
- Bainov, D.; Simeonov, P. Integral Inequalities and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Li, J.D. Opial-type integral inequalities involving several higher order derivatives. J. Math. Anal. Appl. 1992, 167, 98–100. [Google Scholar]
- Mitrinovič, D.S.; Pečarić, J.E.; Fink, A.M. Inequalities involving Functions and Their Integrals ang Derivatives; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Agarwal, R.P.; Thandapani, E. On some new integrodifferential inequalities. Anal. sti. Univ. “Al. I. Cuza” din Iasi 1982, 28, 123–126. [Google Scholar]
- Başcı, Y.; Baleanu, D. New aspects of Opial-type integral inequalities. Adv. Differ. Equ. 2018, 2018, 452. [Google Scholar] [CrossRef]
- Beesack, P.R. On an integral inequality of Z. Opial. Trans. Am. Math. Soc. 1962, 104, 470–475. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Godunova, E.; Levin, V.I. On an inequality of Maron. Mat. Zametki 1967, 2, 221–224. [Google Scholar]
- Hua, L.K. On an inequality of Opial. Sci. Sin. 1965, 14, 789–790. [Google Scholar]
- Mirković, T.Z. Dynamic Opial diamond-α integral inequalities involving the power of a function. J. Inequal. Appl. 2017, 2017, 139. [Google Scholar] [CrossRef]
- Mirković, T.Z.; Tričković, S.B.; Stanković, M.S. Opial inequality in q-calculus. J. Inequal. Appl. 2018, 2018, 347. [Google Scholar] [CrossRef]
- Mitrinovič, D.S. Analytic Inequalities; Springer-Verlag: Berlin, Germany; New York, NY, USA, 1970. [Google Scholar]
- Pachpatte, B.G. On Opial-type integral inequalities. J. Math. Anal. Appl. 1986, 120, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Pečarić, J.E. An Integral Inequality, in Analysis, Geometry, and Groups: A Riemann Legacy Volume, Part II; Srivastava, H.M., Rassias, T.M., Eds.; Hadronic Press: Palm Harbor, FL, USA, 1993; pp. 472–478. [Google Scholar]
- Pečarić, J.E.; Brnetić, I. Note on generalization of Godunova-Levin-Opial inequality. Demonstr. Math. 1997, 30, 545–549. [Google Scholar] [CrossRef]
- Pečarić, J.E.; Brnetić, I. Note on the Generalization of Godunova-Levin-Opial inequality in Several Independent Variables. J. Math. Anal. Appl. 1997, 215, 274–282. [Google Scholar] [CrossRef]
- Rauf, K.; Anthonio, Y.O. Results on an integral inequality of the Opial-type. Glob. J. Pure Appl. Sci. 2017, 23, 151–156. [Google Scholar] [CrossRef]
- Rauf, K.; Anthonio, Y.O. Time scales on Opial-type inequalities. J. Inequal. Spec. Funct. 2017, 8, 86–98. [Google Scholar]
- Rozanova, G.I. Integral inequalities with derivatives and with arbitrary convex functions. Moskov. Gos. Ped. Inst. Vcen. Zap. 1972, 460, 58–65. [Google Scholar]
- Saker, S.H.; Abdou, D.M.; Kubiaczyk, I. Opial and Polya type inequalities via convexity. Fasc. Math. 2018, 60, 145–159. [Google Scholar] [CrossRef]
- Tomovski, Z.; Pečarić, J.; Farid, G. Weighted Opial-type inequalities for fractional integral and differential operators involving generalized Mittag-Leffler functions. Eur. J. Pure Appl. Math. 2017, 10, 419–439. [Google Scholar]
- Yang, G.S. Inequality of Opial-type in two variables. Tamkung J. Math. 1982, 13, 255–259. [Google Scholar]
- Zhao, C.-J.; Bencze, M. On Agarwal-Pang type integral inequalities. Ukrainan Math. J. 2012, 64, 200–209. [Google Scholar] [CrossRef]
- Zhao, C.-J.; Cheung, W.S. On Opial inequalities involving higher order derivatives. Bull. Korean Math. Soc. 2012, 49, 1263–1274. [Google Scholar] [CrossRef]
- Zhao, C.-J.; Cheung, W.S. On Opial-Dan’s type inequalities. Bull. Malaysian Math. Soc. 2014, 37, 1169–1175. [Google Scholar]
- Zhao, C.-J.; Cheung, W.S. On Opial-type integral inequalities and applications. Math. Inequ. Appl. 2014, 17, 223–232. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.-J. On Opial’s Type Integral Inequalities. Mathematics 2019, 7, 375. https://doi.org/10.3390/math7040375
Zhao C-J. On Opial’s Type Integral Inequalities. Mathematics. 2019; 7(4):375. https://doi.org/10.3390/math7040375
Chicago/Turabian StyleZhao, Chang-Jian. 2019. "On Opial’s Type Integral Inequalities" Mathematics 7, no. 4: 375. https://doi.org/10.3390/math7040375
APA StyleZhao, C.-J. (2019). On Opial’s Type Integral Inequalities. Mathematics, 7(4), 375. https://doi.org/10.3390/math7040375