Next Article in Journal
On Pre-Commutative Algebras
Previous Article in Journal
Some Remarks and New Results in Ordered Partial b-Metric Spaces
Article Menu

Export Article

Open AccessArticle
Mathematics 2019, 7(4), 335; https://doi.org/10.3390/math7040335

Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers

1
Department of Mathematics, College of Arts and Sciences, Bukidnon State University, Malaybalay City 8700, Philippines
2
Research Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City 6000, Philippines
3
Department of Mathematics and Statistics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
*
Author to whom correspondence should be addressed.
Received: 24 January 2019 / Revised: 20 March 2019 / Accepted: 4 April 2019 / Published: 7 April 2019
(This article belongs to the Section Mathematics and Computers Science)
  |  
PDF [724 KB, uploaded 7 April 2019]

Abstract

In this paper, we define Hurwitz–Lerch multi-poly-Cauchy numbers using the multiple polylogarithm factorial function. Furthermore, we establish properties of these types of numbers and obtain two different forms of the explicit formula using Stirling numbers of the first kind. View Full-Text
Keywords: multiple polylogarithm functions; poly-Cauchy numbers of the first and second kind; Hurwitz–Lerch factorial zeta function; generating function multiple polylogarithm functions; poly-Cauchy numbers of the first and second kind; Hurwitz–Lerch factorial zeta function; generating function
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Lacpao, N.; Corcino, R.; Vega, M.A.R. Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers. Mathematics 2019, 7, 335.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mathematics EISSN 2227-7390 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top