Next Article in Journal
Novel Transformer Fault Identification Optimization Method Based on Mathematical Statistics
Previous Article in Journal
Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System

School of Mathematics and statistics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Mathematics 2019, 7(3), 287; https://doi.org/10.3390/math7030287
Submission received: 20 February 2019 / Revised: 14 March 2019 / Accepted: 15 March 2019 / Published: 20 March 2019

Abstract

:
In this paper, we consider the initial value problem for the linearized compressible Navier–Stokes–Korteweg system. Asymptotic profiles and convergence rates are established by Fourier splitting frequency technique. Moreover, some applications of asymptotic profile and convergence rates are exhibited.

1. Introduction

The compressible Navier–Stokes–Korteweg system takes the following form
t ρ + · ( ρ u ) = 0 , t ( ρ u ) + · ( ρ u u ) + P ( ρ ) μ 1 Δ u ( μ 1 + μ 2 ) ( · u ) = α ρ Δ ρ ,
The variables are the density ρ and the velocity u. Furthermore, p = p ( ρ ) is the pressure function satisfying P ( ρ ) > 0 for ρ > 0 . The viscosity coefficients satisfy μ 1 > 0 , 2 μ 1 + n μ 2 > 0 , α > 0 , while ρ ¯ > 0 denotes the background doping profile, and in this paper is taken as a positive constant for simplicity.
The compressible Navier–Stokes–Korteweg systems have strong physical backgrounds, which can be used to describe the dynamics of a liquid–vapor mixture in the setting of the diffuse interface approach: between the two phases lies a thin region of continuous transition and the phase changes are described through the variations of the density, for example a Van der Waals pressure. The system was derived rigorously by Dunn and Serrin [1], see also [2,3]. Equation (1) has attracted interests of lots of mathematicians and physicists and some important results were made, we may refer to [4,5,6,7,8,9,10,11,12,13,14,15,16].
Let σ = ρ 1 and P ( 1 ) = 1 . The linearized compressible Navier–Stokes–Korteweg system (1) is
t σ + · u = 0 , t u + σ μ 1 Δ u ( μ 1 + μ 2 ) ( · u ) α Δ σ = 0 ,
We consider the asymptotic profiles of solutions to Equation (2) with the initial value
t = 0 : σ = σ 0 ( x ) , u = u 0 ( x ) .
As far as we know, there are few results about asymptotic profiles of solutions to the linearized compressible Navier–Stokes–Korteweg system (2). In this paper, our main aim is to establish the asymptotic profiles of solutions to the problems (2) and (3) in the spirit of [17,18,19,20,21]. More precisely, we show that the asymptotic profile of solutions is given by the convolution of the fundamental solutions of diffusion and free wave equations. For the detail, we refer to Theorem 1. Moreover, on one hand, the decay estimate of solutions to Equations (2) and (3) immediately follows from this asymptotic profile result. On the other hand, the decay estimate of solutions is also optimal under suitable conditions. The study of asymptotic profiles of solutions to the problems (2) and (3) may provide some useful ideas and methods of studying the nonlinear problem in future.
To establish the asymptotic profiles of solutions to the problems (2) and (3), it is necessary to derive the solution formula to the problems (2) and (3). We find that solutions operator is related to a fourth order wave equation with strong damping. This wave equation is called as Boussinesq equation with damping. For the Boussinesq equation with damping, the author of this paper has obtained some results. For the details, we may refer to [22].
The following are some notations which are used in this paper. Let F [ u ] denote the Fourier transform of u defined by
u ^ ( ξ ) = F [ u ] ( ξ ) : = R n e i ξ · x u ( x ) d x .
We denote its inverse transform by F 1 . For 1 p , L p = L p ( R n ) denotes the usual Lebesgue space with the norm · L p . For γ R , let L 1 , γ ( R n ) denote the weighted L 1 space with the norm
f L 1 , γ = R n ( 1 + | x | ) γ | f ( x ) | d x .
The paper is organized as follows. Section 2 is devoted to derive solutions formula to the problems (2) and (3). The decay properties of the solutions operator is established in Section 3. While, Section 4 is devoted to establish the asymptotic profiles of solutions to the problems (2) and (3) in the low frequency region. The high frequency case is discussed in Section 5. Finally, the asymptotic profiles of solutions and applications are stated in Section 6.

2. Solution Formula

This section is devoted to deriving the solutions formula to problems (2) and (3). For simplicity, we set μ = 2 μ 1 + μ 2 . It is not difficult to obtain the solutions formula to problems (2) and (3).
σ u = G ( x , t ) σ 0 u 0 = G 11 G 12 G 21 G 22 σ 0 u 0 ,
where
G ( x , t ) = F 1 [ G ^ ( ξ , t ) ] = F 1 [ G ^ 11 ] F 1 [ G ^ 12 ] F 1 [ G ^ 21 ] F 1 [ G ^ 22 ] ,
with
G ^ 11 = H ^ , G ^ 12 = i ξ τ G ^ , G ^ 21 = i ( 1 + α | ξ | 2 ) ξ G ^ , G ^ 22 = ( μ | ξ | 2 G ^ + H ^ ) ξ ξ · | ξ | 2 ,
G ^ ( ξ , t ) = e λ + t e λ t λ + λ , H ^ ( ξ , t ) = λ + e λ t λ e λ + t λ + λ
and
λ ± ( ξ ) = μ | ξ | 2 ± μ 2 | ξ | 4 4 ( | ξ | 2 + α | ξ | 4 ) 2 .
In fact, taking the time derivative for the first equation of (2) and by using the first and second equations of (2), it follows that
σ t t Δ σ μ Δ σ t + α Δ 2 σ = 0 .
Notice
t = 0 : σ = σ 0 , σ t = · u 0 .
We apply the Fourier transform to Equations (9) and (10)
t t σ ^ + μ | ξ | 2 σ ^ t + ( | ξ | 2 + α | ξ | 4 ) σ ^ = 0 , t = 0 : σ ^ = σ ^ 0 , σ ^ t = i ξ · u ^ 0 .
Solving the problem (11), we arrive at
σ ^ ( ξ , t ) = G ^ ( ξ , t ) ( i ξ · u ^ 0 ) ( ξ ) + H ^ ( ξ , t ) σ ^ 0 ( ξ ) .
Taking divergence and time derivative for the second equation of (2) and using (2) and (3), it follows that
( · u ) t t Δ ( · u ) μ Δ ( · u ) t + α Δ 2 ( · u ) = 0 .
Notice
t = 0 : · u = · u 0 , ( · u ) t = Δ σ 0 + μ Δ ( · u 0 ) + α Δ 2 σ 0 .
Applying the Fourier transform to Equations (13) and (14), it yields that
t t ( ξ · u ^ ) + μ | ξ | 2 ( ξ · u ^ ) t + ( | ξ | 2 + α | ξ | 4 ) ( ξ · u ^ ) = 0 , t = 0 : ξ · u ^ = ξ · u ^ 0 , ( ξ · u ^ ) t = i ( | ξ | 2 + α | ξ | 4 ) σ ^ 0 μ | ξ | 2 ( ξ · u ^ 0 ) .
Then we get from (15)
ξ · u ^ ( ξ , t ) = G ^ ( ξ , t ) i ( | ξ | 2 + α | ξ | 4 ) σ ^ 0 μ | ξ | 2 ( ξ · u ^ 0 ) ( ξ ) + H ^ ( ξ , t ) ( ξ · u ^ 0 ) ( ξ ) .
Owing to Equations (8) and (16) and the inverse Fourier transform, we obtain the solution Formula (4) to the problems (2) and (3).
Let
d ( x , t ) = Λ 1 · u , v ( x , t ) = Λ 1 c u r l u ,
where Λ = ( Δ ) 1 2 . Owing to the identity
Δ = · c u r l c u r l ,
then we have the decomposition
u ( x , t ) = Λ 1 d + Λ 1 c u r l v .
Then from Equations (2) and (3), we deduce that
t d μ Δ d Λ σ α Λ 3 d = 0 , t v μ 1 Δ v = 0 , t = 0 : d = Λ 1 · u 0 , v = Λ 1 c u r l u 0 .
and
t v μ 1 Δ v = 0 , t = 0 : v = Λ 1 c u r l u 0 .

3. Decay Properties

In this section, our aim is to derive the decay properties of solution operators G. Since the solution operator G is given in term of G and H , therefore, we only study the decay properties of the solution operators G and H . The following estimate has been derived by applying the energy method in the Fourier space to the first equation in (11) (see [22,23,24]).
Lemma 1.
Let σ be the solution to the problems (9) and (10). Then its Fourier image σ ^ verifies the pointwise estimate
| σ ^ t ( ξ , t ) | 2 + | ξ | 2 ( 1 + | ξ | 2 ) | σ ^ ( ξ , t ) | 2 C e c | ξ | 2 t ( | ξ | 2 | u ^ 0 | 2 + | ξ | 2 ( 1 + | ξ | 2 ) | σ ^ 0 | 2 ) ,
for ξ R n and t 0 .
It follows from Equation (19) that
d t t Δ d μ Δ d t + α Δ 2 d = 0 , t = 0 : d = Λ 1 · u 0 , d t = Λ σ 0 μ Λ ( · u 0 ) + α Λ 3 σ 0 .
From Lemma 1, we directly deduce that
Lemma 2.
Let d be the solution to the problem (22). Then its Fourier image d ^ verifies the pointwise estimate
| d ^ t ( ξ , t ) | 2 + | ξ | 2 ( 1 + | ξ | 2 ) | d ^ ( ξ , t ) | 2 C e c | ξ | 2 t ( | | ξ | σ ^ 0 μ | ξ | ( ξ · u 0 ) + α | ξ | 3 σ ^ 0 | 2 + | ξ | 2 ( 1 + | ξ | 2 ) | | ξ | 1 ( ξ · u 0 ) | 2 ) ,
for ξ R n and t 0 .
The pointwise estimate (21) together with the solution formula (12) gives the corresponding pointwise estimates for G ^ and H ^ . The result is stated as follows.
Lemma 3.
Let G ^ and H ^ be the fundamental solutions of Equation (9) in the Fourier space, which are given explicitly in Equation (7). Then we have the pointwise estimates
| G ^ ( ξ , t ) | C | ξ | 1 ( 1 + | ξ | 2 ) 1 2 e c | ξ | 2 t , | H ^ ( ξ , t ) | C e c | ξ | 2 t , | G ^ t ( ξ , t ) | C e c | ξ | 2 t , | H ^ t ( ξ , t ) | C | ξ | ( 1 + | ξ | 2 ) 1 2 e c | ξ | 2 t
for ξ R n and t 0 .

4. Low Frequency Case

Motivated by Ikehata [18], the purpose of this section is to prove asymptotic profiles of solutions to problems (2) and (3) in the low frequency region. When | ξ | δ 0 ,
G ^ ( ξ , t ) = e μ 2 | ξ | 2 t sin A ( ξ ) | ξ | t A ( ξ ) | ξ |
and
H ^ ( ξ , t ) = e μ 2 | ξ | 2 t μ | ξ | 2 A ( ξ ) sin A ( ξ ) | ξ | t + e μ 2 | ξ | 2 t cos A ( ξ ) | ξ | t ,
where
A ( ξ ) = 1 + 4 α μ 2 4 | ξ | 2 .
Let
B ( s ) = sin | ξ | t 1 + 4 α μ 2 4 | ξ | 2 s .
The mean value theorem entails that
B ( 1 ) B ( 0 ) = B ( θ 1 ) , θ 1 ( 0 , 1 ) .
That is,
sin A ( ξ ) | ξ | t = sin | ξ | t + ( 4 α μ 2 ) | ξ | 3 t 8 1 + 4 α μ 2 4 θ 1 | ξ | 2 × cos | ξ | t 1 + 4 α μ 2 4 ) θ 1 | ξ | 2 = sin | ξ | t + cos | ξ | t 1 + 4 α μ 2 4 θ 1 | ξ | 2 O ( | ξ | 3 ) t .
It follows from the Taylor formula that
1 A ( ξ ) = 1 + O ( | ξ | 2 ) .
Inserting Equations (27) and (28) into Equation (25) yields
G ^ ( ξ , t ) = e μ 2 | ξ | 2 t | ξ | 1 + O ( | ξ | 2 ) [ sin | ξ | t + cos | ξ | t 1 + 4 α μ 2 4 θ 1 | ξ | 2 O ( | ξ | 3 ) t ] = e μ 2 | ξ | 2 t sin | ξ | t | ξ | + e μ 2 | ξ | 2 t sin | ξ | t O | ξ | + e μ 2 | ξ | 2 t cos | ξ | t 1 + 4 α μ 2 4 θ 1 | ξ | 2 O | ξ | 2 t .
Let
C ( s ) = cos | ξ | t 1 + 4 α μ 2 4 | ξ | 2 s .
Thanks to Mean value theorem, we arrive at
C ( 1 ) C ( 0 ) = C ( θ 2 ) , θ 2 ( 0 , 1 ) .
That is,
cos A ( ξ ) | ξ | t = cos | ξ | t ( 4 α μ 2 ) | ξ | 3 t 8 1 + 4 α μ 2 4 θ 2 | ξ | 2 ×
sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 = cos | ξ | t sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 O ( | ξ | 3 ) t .
We substitute Equations (28) and (30) into Equation (26) and obtain
H ^ ( ξ , t ) = e μ 2 | ξ | 2 t cos | ξ | t sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 O ( | ξ | 3 ) t + e μ 2 | ξ | 2 t sin A ( ξ ) | ξ | t μ | ξ | 2 ( 1 + O ( | ξ | 2 ) ) = e μ 2 | ξ | 2 t cos | ξ | t e μ 2 | ξ | 2 t sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 O ( | ξ | 3 ) t + e μ 2 | ξ | 2 t sin A ( ξ ) | ξ | t O ( | ξ | ) .
Due to Equations (12), (29) and (31), we arrive at
σ ^ ( ξ , t ) = e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · u ^ 0 ( ξ ) ) + e μ 2 | ξ | 2 t cos | ξ | t σ ^ 0 ( ξ ) e μ 2 | ξ | 2 t sin | ξ | t O | ξ | ( i ξ · u ^ 0 ( ξ ) ) + e μ 2 | ξ | 2 t cos | ξ | t 1 + 4 α μ 2 4 θ 1 | ξ | 2 O | ξ | 2 t ( i ξ · u ^ 0 ( ξ ) ) e μ 2 | ξ | 2 t sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 O ( | ξ | 3 ) t σ ^ 0 ( ξ ) + e μ 2 | ξ | 2 t sin A ( ξ ) | ξ | t O ( | ξ | ) σ ^ 0 ( ξ ) .
Owing to the definition of Fourier transform and Euler formula, we deduce that
u ^ 0 ( ξ ) = R n e i x · ξ u 0 ( x ) d x = P u 0 ( ξ ) i Q u 0 ( ξ ) + R u 0 ,
where
P u 0 = ( P u 0 1 , , P u 0 n ) , Q u 0 = ( Q u 0 1 , , Q u 0 n ) , R u 0 = ( R u 0 1 , , R u 0 n ) ,
with
P u 0 j ( ξ ) = R n cos ( x · ξ ) 1 u 0 j ( x ) d x ( j = 1 , , n ) , Q u 0 j ( ξ ) = R n sin ( x · ξ ) u 0 j ( x ) d x ( j = 1 , , n ) , R u 0 j = R n u 0 j ( x ) d x ( j = 1 , , n ) .
Similarly,
σ ^ 0 ( ξ ) = R n e i x · ξ σ 0 ( x ) d x = P σ 0 ( ξ ) i Q σ 0 ( ξ ) + R σ 0 ,
where
P σ 0 ( ξ ) = R n cos ( x · ξ ) 1 σ 0 ( x ) d x ( j = 1 , , n ) , Q σ 0 ( ξ ) = R n sin ( x · ξ ) σ 0 ( x ) d x ( j = 1 , , n ) , R σ 0 = R n σ 0 j ( x ) d x ( j = 1 , , n ) .
Combining Equations (32), (33) and (35) yields
σ ^ ( ξ , t ) = e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + e μ 2 | ξ | 2 t cos | ξ | t R σ 0 + e μ 2 | ξ | 2 t sin | ξ | t | ξ | i ξ · P u 0 ( ξ ) i Q u 0 ( ξ ) + e μ 2 | ξ | 2 t cos | ξ | t P σ 0 ( ξ ) i Q σ 0 ( ξ ) + e μ 2 | ξ | 2 t sin | ξ | t O | ξ | i ξ · P u 0 ( ξ ) i Q u 0 ( ξ ) + e μ 2 | ξ | 2 t sin | ξ | t O | ξ | i ξ · R u 0 + e μ 2 | ξ | 2 t cos | ξ | t 1 + 4 α μ 2 4 P ( 1 ) θ 1 | ξ | 2 O | ξ | 2 t i ξ · P u 0 ( ξ ) i Q u 0 ( ξ ) e μ 2 | ξ | 2 t cos | ξ | t 1 + 4 α μ 2 4 θ 1 | ξ | 2 O | ξ | 2 t ( i ξ · R u 0 ) e μ 2 | ξ | 2 t sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 O ( | ξ | 3 ) t P σ 0 ( ξ ) i Q σ 0 ( ξ ) + e μ 2 | ξ | 2 t sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 O ( | ξ | 3 ) t R σ 0 + e μ 2 | ξ | 2 t sin A ( ξ ) | ξ | t O ( | ξ | ) P σ 0 ( ξ ) i Q σ 0 ( ξ ) + e μ 2 | ξ | 2 t sin A ( ξ ) | ξ | t O ( | ξ | ) R σ 0 = : e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + e μ 2 | ξ | 2 t cos | ξ | t R σ 0 + j = 1 10 I j .
Thus, we arrive at
| ξ | δ 0 | σ ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + cos | ξ | t R σ 0 | 2 d ξ
C j = 1 10 | ξ | δ 0 | I j | 2 d ξ .
To establish the estimates in low frequency region, we need the following Lemma that comes from [18,25].
Lemma 4.
For ξ R n , then we have
| P σ 0 ( ξ ) | K | ξ | σ 0 L 1 , 1 , | Q σ 0 ( ξ ) | L | ξ | σ 0 L 1 , 1 , | P u 0 ( ξ ) | K | ξ | u 0 L 1 , 1 , | Q u 0 ( ξ ) | L | ξ | u 0 L 1 , 1 ,
where
K : sup τ 0 | 1 cos τ | | τ | < + , L : sup τ 0 | sin τ | | τ | < + .
Lemma 5.
Assume that σ 0 , u 0 L 1 , 1 ( R n ) . Let ( σ , u ) be the solution to problems (2) and (3). Then we have
| ξ | δ 0 | σ ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + cos | ξ | t R σ 0 | 2 d ξ C σ 0 L 1 , 1 2 + | R σ 0 | 2 + u 0 L 1 , 1 2 + | R u 0 | 2 ( 1 + t ) ( n / 2 + 1 ) .
Proof. 
It follows from Lemma 4 that
| ξ | δ 0 | I 1 | 2 d ξ C u 0 L 1 , 1 2 | ξ | δ 0 | ξ | 2 e μ | ξ | 2 t d ξ C u 0 L 1 , 1 2 ( 1 + t ) ( n / 2 + 1 ) .
| ξ | δ 0 | I 2 | 2 d ξ C σ 0 L 1 , 1 2 | ξ | δ 0 | ξ | 2 e μ | ξ | 2 t d ξ C σ 0 L 1 , 1 2 ( 1 + t ) ( n / 2 + 1 ) .
| ξ | δ 0 | I 3 | 2 d ξ C u 0 L 1 , 1 2 | ξ | δ 0 | ξ | 6 e μ | ξ | 2 t d ξ C u 0 L 1 , 1 2 ( 1 + t ) ( n / 2 + 3 ) .
| ξ | δ 0 | I 4 | 2 d ξ C | R u 0 | 2 | ξ | δ 0 | ξ | 2 e μ | ξ | 2 t d ξ C | R u 0 | 2 ( 1 + t ) ( n / 2 + 1 ) .
| ξ | δ 0 | I 5 | 2 d ξ C u 0 L 1 , 1 2 t 2 | ξ | δ 0 | ξ | 8 e μ | ξ | 2 t d ξ C u 0 L 1 , 1 2 ( 1 + t ) ( n / 2 + 2 ) .
| ξ | δ 0 | I 6 | 2 d ξ C | R u 0 | 2 t 2 | ξ | δ 0 | ξ | 6 e μ | ξ | 2 t d ξ C | R u 0 | 2 ( 1 + t ) ( n / 2 + 1 ) .
| ξ | δ 0 | I 7 | 2 d ξ C σ 0 L 1 , 1 2 t 2 | ξ | δ 0 | ξ | 8 e μ | ξ | 2 t d ξ C σ 0 L 1 , 1 2 ( 1 + t ) ( n / 2 + 2 ) .
| ξ | δ 0 | I 8 | 2 d ξ C | R σ 0 | 2 t 2 | ξ | δ 0 | ξ | 6 e μ | ξ | 2 t d ξ C | R σ 0 | 2 ( 1 + t ) ( n / 2 + 1 ) .
| ξ | δ 0 | I 9 | 2 d ξ C σ 0 L 1 , 1 2 | ξ | δ 0 | ξ | 4 e μ | ξ | 2 t d ξ C σ 0 L 1 , 1 2 ( 1 + t ) ( n / 2 + 2 ) .
and
| ξ | δ 0 | I 10 | 2 d ξ C | R σ 0 | 2 | ξ | δ 0 | ξ | 2 e μ | ξ | 2 t d ξ C | R σ 0 | 2 ( 1 + t ) ( n / 2 + 1 ) .
We substitute Equations (41)–(50) into Equation (38) and obtain Equation (40). The Lemma is proved. □
Noting that
u ^ ( ξ , t ) = i ( 1 + α | ξ | 2 ) ξ G ^ σ ^ 0 + ( μ | ξ | 2 G ^ + H ^ ) ξ ( ξ · u ^ 0 ) | ξ | 2 = e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ ( P σ 0 ( ξ ) i Q σ 0 ( ξ ) + R σ 0 ) ) + e μ 2 | ξ | 2 t sin | ξ | t O | ξ | ( i ξ ( P σ 0 ( ξ ) i Q σ 0 ( ξ ) + R σ 0 ) ) + e μ 2 | ξ | 2 t cos | ξ | t 1 + 4 α μ 2 4 θ 1 | ξ | 2 O | ξ | 2 t ( i ξ ( P σ 0 ( ξ ) i Q σ 0 ( ξ ) + R σ 0 ) ) α | ξ | 2 G ^ ( i ξ ( P σ 0 ( ξ ) i Q σ 0 ( ξ ) + R σ 0 ) ) μ G ^ ( ξ ( ξ · ( P u 0 ( ξ ) i Q u 0 ( ξ ) + R u 0 ) ) ) + e μ 2 | ξ | 2 t cos | ξ | t ( ξ ξ · | ξ | 2 ( P u 0 ( ξ ) i Q u 0 ( ξ ) + R u 0 ) ) μ 2 | ξ | 2 t sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 O ( | ξ | 3 ) t ( ξ ξ · | ξ | 2 ( P u 0 ( ξ ) i Q u 0 ( ξ ) + R u 0 ) ) + e μ 2 | ξ | 2 t sin A ( ξ ) | ξ | t O ( | ξ | ) ( ξ ξ · | ξ | 2 ( P u 0 ( ξ ) i Q u 0 ( ξ ) + R u 0 ) ) .
From (51), we obtain
u ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ R σ 0 ) e μ 2 | ξ | 2 t cos | ξ | t ξ ( ξ · R u 0 ) | ξ | 2 = e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ ( P σ 0 ( ξ ) i Q σ 0 ( ξ ) ) ) + e μ 2 | ξ | 2 t sin | ξ | t O | ξ | ( i ξ ( P σ 0 ( ξ ) i Q σ 0 ( ξ ) + R σ 0 ) ) + e μ 2 | ξ | 2 t cos | ξ | t 1 + 4 α μ 2 4 θ 1 | ξ | 2 O | ξ | 2 t ( i ξ ( P σ 0 ( ξ ) i Q σ 0 ( ξ ) + R σ 0 ) ) α | ξ | 2 G ^ ( i ξ ( P σ 0 ( ξ ) i Q σ 0 ( ξ ) + R σ 0 ) ) μ G ^ ( ξ ( ξ · ( P u 0 ( ξ ) i Q u 0 ( ξ ) + R u 0 ) ) ) + e μ 2 | ξ | 2 t cos | ξ | t ( ξ ξ · | ξ | 2 ( P u 0 ( ξ ) i Q u 0 ( ξ ) ) ) μ 2 | ξ | 2 t sin | ξ | t 1 + 4 α μ 2 4 θ 2 | ξ | 2 O ( | ξ | 3 ) t ( ξ ξ · | ξ | 2 ( P u 0 ( ξ ) i Q u 0 ( ξ ) + R u 0 ) ) + e μ 2 | ξ | 2 t sin A ( ξ ) | ξ | t O ( | ξ | ) ( ξ ξ · | ξ | 2 ( P u 0 ( ξ ) i Q u 0 ( ξ ) + R u 0 ) ) = : j = 1 8 J j .
Lemma 6.
Assume that σ 0 , u 0 L 1 , 1 ( R n ) . Let ( σ , u ) be the solution to problems (2) and (3). Then we have
| ξ | δ 0 | u ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R σ 0 ) + cos | ξ | t ξ ( ξ · R u 0 ) | ξ | 2 | 2 d ξ C σ 0 L 1 , 1 2 + | R σ 0 | 2 + u 0 L 1 , 1 2 + | R u 0 | 2 ( 1 + t ) ( n / 2 + 1 ) .
Proof. 
Lemma 4 entails that
| ξ | δ 0 | J 1 | 2 d ξ C σ 0 L 1 , 1 2 | ξ | δ 0 | ξ | 2 e μ | ξ | 2 t d ξ C σ 0 L 1 , 1 2 ( 1 + t ) ( n / 2 + 1 ) ,
| ξ | δ 0 | J 2 | 2 d ξ C ( σ 0 L 1 , 1 2 + | R σ 0 | 2 ) | ξ | δ 0 | ξ | 4 e μ | ξ | 2 t d ξ C ( σ 0 L 1 , 1 2 + | R σ 0 | 2 ) ( 1 + t ) ( n / 2 + 2 ) ,
| ξ | δ 0 | J 3 | 2 d ξ C ( σ 0 L 1 , 1 2 + | R σ 0 | 2 ) t 2 | ξ | δ 0 | ξ | 6 e μ | ξ | 2 t d ξ C ( σ 0 L 1 , 1 2 + | R σ 0 | 2 ) ( 1 + t ) ( n / 2 + 1 ) ,
| ξ | δ 0 | J 4 | 2 d ξ C ( σ 0 L 1 , 1 2 + | R σ 0 | 2 ) | ξ | δ 0 | ξ | 4 e μ | ξ | 2 t d ξ C ( σ 0 L 1 , 1 2 + | R σ 0 | 2 ) ( 1 + t ) ( n / 2 + 2 ) ,
| ξ | δ 0 | J 5 | 2 d ξ C ( u 0 L 1 , 1 2 + | R u 0 | 2 ) | ξ | δ 0 | ξ | 2 e c | ξ | 2 t d ξ C ( u 0 L 1 , 1 2 + | R u 0 | 2 ) ( 1 + t ) ( n / 2 + 1 ) ,
| ξ | δ 0 | J 6 | 2 d ξ C u 0 L 1 , 1 2 | ξ | δ 0 | ξ | 2 e μ | ξ | 2 t d ξ C u 0 L 1 , 1 2 ( 1 + t ) ( n / 2 + 1 ) ,
| ξ | δ 0 | J 7 | 2 d ξ C ( u 0 L 1 , 1 2 + | R u 0 | 2 ) t 2 | ξ | δ 0 | ξ | 6 e μ | ξ | 2 t d ξ C ( u 0 L 1 , 1 2 + | R u 0 | 2 ) ( 1 + t ) ( n / 2 + 1 )
and
| ξ | δ 0 | J 8 | 2 d ξ C ( u 0 L 1 , 1 2 + | R u 0 | 2 ) | ξ | δ 0 | ξ | 2 e μ | ξ | 2 t d ξ C ( u 0 L 1 , 1 2 + | R u 0 | 2 ) ( 1 + t ) ( n / 2 + 1 ) .
Inserting the above estimates into Equation (52) yields Equation (53). We have completed the proof of Lemma 6. □

5. High Frequency Case

Lemma 7.
Assume that σ 0 H 1 ( R n ) L 1 , 1 ( R n ) and u 0 L 2 ( R n ) L 1 , 1 ( R n ) . Let ( σ , u ) be the solution to problems (2) and (3). Then for t 1 we have
| ξ | δ 0 | σ ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + cos | ξ | t R σ 0 | 2 d ξ C σ 0 L 2 2 + u 0 L 2 2 + | R σ 0 | 2 + | R u 0 | 2 e c t
and
| ξ | δ 0 | u ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R σ 0 ) + cos | ξ | t ξ ( ξ · R u 0 ) | ξ | 2 | 2 d ξ C σ 0 H 1 2 + u 0 L 2 2 + | R σ 0 | 2 + | R u 0 | 2 e c t .
Proof. 
Owing to the Minkowski inequality and Lemma 1, we deduce that
| ξ | δ 0 | σ ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + cos | ξ | t R σ 0 | 2 d ξ 2 | ξ | δ 0 | σ ^ ( ξ , t ) | 2 d ξ + C ( | R σ 0 | 2 + | R u 0 | 2 ) | ξ | δ 0 e μ | ξ | 2 t d ξ C | ξ | δ 0 e c | ξ | 2 t ( 1 + | ξ | 2 ) 1 | u ^ 0 | 2 + | σ ^ 0 | 2 d ξ + C ( | R σ 0 | 2 + | R u 0 | 2 ) e μ 2 δ 0 2 t | ξ | δ 0 e μ 2 | ξ | 2 t d ξ C σ 0 L 2 2 + u 0 L 2 2 e c t + C | R σ 0 | 2 + | R u 0 | 2 e c t t n / 2 C σ 0 L 2 2 + u 0 L 2 2 + | R σ 0 | 2 + | R u 0 | 2 e c t ,
where we have used t 1 in the third inequality. By using Minkowski inequality, (18), Lemma 2, and Equation (20), we arrive at
| ξ | δ 0 | u ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R σ 0 ) + cos | ξ | t ξ ( ξ · R u 0 ) | ξ | 2 | 2 d ξ 2 | ξ | δ 0 | u ^ ( ξ , t ) | 2 d ξ + C ( | R σ 0 | 2 + | R u 0 | 2 ) | ξ | δ 0 e μ | ξ | 2 t d ξ C | ξ | δ 0 ( | d ^ ( ξ , t ) | 2 + | v ^ ( ξ , t ) | 2 ) d ξ + C ( | R σ 0 | 2 + | R u 0 | 2 ) e μ 2 δ 0 2 t | ξ | δ 0 e μ 2 | ξ | 2 t d ξ C σ 0 H 1 2 + u 0 L 2 2 e c t + C | ξ | δ 0 e 2 μ 1 | ξ | 2 t | Λ 1 curl u 0 ^ | 2 d ξ + C | R σ 0 | 2 + | R u 0 | 2 e c t t n / 2 C σ 0 H 1 2 + u 0 L 2 2 + | R σ 0 | 2 + | R u 0 | 2 e c t .
Thus, Lemma 7 is proved. □

6. Asymptotic Profiles and Applications

In this section, our aim is to establish the asymptotic profiles of solutions to problems (2) and (3) and give two applications.

6.1. Asymptotic Profiles

In this section, we state the asymptotic profiles of solutions to problems (2) and (3).
Theorem 1.
Assume that σ 0 H 1 L 1 , 1 and u 0 L 2 L 1 , 1 . Let ( σ , u ) be the solutions to problems (2) and (3). Then for t 1 we have
R n | σ ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + cos | ξ | t R σ 0 | 2 d ξ C σ 0 L 1 , 1 2 + u 0 L 1 , 1 2 + | R σ 0 | 2 + | R u 0 | 2 t ( n / 2 + 1 ) + C σ 0 L 2 2 + u 0 L 2 2 + | R σ 0 | 2 + | R u 0 | 2 e c t
and
R n | u ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R σ 0 ) + cos | ξ | t ξ ( ξ · R u 0 ) | ξ | 2 | 2 d ξ C σ 0 L 1 , 1 2 + u 0 L 1 , 1 2 + | R σ 0 | 2 + | R u 0 | 2 t ( n / 2 + 1 ) + C σ 0 H 1 2 + u 0 L 2 2 + | R σ 0 | 2 + | R u 0 | 2 e c t ,
where R σ 0 and R u 0 are given by Equations (34) and (36), respectively.
Proof. 
Lemmas 5–7 imply that Equations (56) and (57) hold immediately. The proof of Theorem 1 is completed. □

6.2. Application I

By the above asymptotic profile of solutions, it is not difficult to find that solution ( σ , u ) satisfies the following decay estimate, which may be found in [10].
Corollary 1.
Assume that σ 0 H 1 L 1 , 1 and u 0 L 2 L 1 , 1 . Let ( σ , u ) be the solution to problems (2) and (3). Then for t 1 we have
σ ( t ) L 2 2 C ( σ 0 L 1 , 1 2 + u 0 L 1 , 1 2 + | R σ 0 | 2 + | R u 0 | 2 + σ 0 L 2 2 + u 0 L 2 2 ) t n / 2
and
u ( t ) L 2 2 C ( σ 0 L 1 , 1 2 + u 0 L 1 , 1 2 + | R σ 0 | 2 + | R u 0 | 2 + σ 0 H 1 2 + u 0 L 2 2 ) t n / 2 .
Proof. 
The proof of Equations (58) and (59) is similar. We only prove (58). Due to, Equation (56), it holds that
σ ( t ) L 2 2 = R n | σ ^ ( ξ , t ) | 2 d ξ 2 R n | σ ^ ( ξ , t ) e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + cos | ξ | t R σ 0 | 2 d ξ + 2 R n | e μ 2 | ξ | 2 t sin | ξ | t | ξ | ( i ξ · R u 0 ) + cos | ξ | t R σ 0 | 2 d ξ
C σ 0 L 1 , 1 2 + u 0 L 1 , 1 2 + | R σ 0 | 2 + | R u 0 | 2 + σ 0 L 2 2 + u 0 L 2 2 t ( n / 2 + 1 ) + C ( | R σ 0 | 2 + | R u 0 | 2 ) t n / 2 C σ 0 L 1 , 1 2 + u 0 L 1 , 1 2 + | R σ 0 | 2 + | R u 0 | 2 + σ 0 L 2 2 + u 0 L 2 2 t n / 2 .
Hence Corollary 1 is proved. □

6.3. Application II

By the above asymptotic profile of solutions, we may prove that solution u has optimal decay estimate under suitable conditions. We may refer to [17] for the wave equation with strong damping.
Corollary 2.
Let n 2 . Under the same conditions of Theorem 1. Assume that | R σ 0 | 0 and | R u 0 | / | R σ 0 | 1 . Then for t 1 we have
c t n 4 u ( t ) L 2 C t n 4 .
To complete the proof of Corollary 2, we need the following estimates, which have been established in [17].
Lemma 8.
Let n 1 . There exist constants C > 0 depending on n and μ such that
C t n / 2 R n | e μ 2 | ξ | 2 t sin ( | ξ | t ) | ξ | ( i ξ ) | 2 d ξ C t n / 2
and
C t n / 2 | R u 0 | 2 R n | e μ 2 | ξ | 2 t cos ( | ξ | t ) ξ ( ξ · R u 0 ) | ξ | 2 | 2 d ξ C | R u 0 | 2 t n / 2 .
In what follows, we give the details of Corollary 2.
Proof. 
The right inequality immediately follows from (59). Now, we prove that the left inequality holds. It follows from Equations (57), (61) and (62) that
u ( t ) L 2 = u ^ ( t ) L 2 e μ 2 | ξ | 2 t sin ( | ξ | t ) | ξ | ( i ξ · R σ 0 ) + cos ( | ξ | t ) ξ ( ξ · R u 0 ) | ξ | 2 L 2 u ^ ( t ) e μ 2 | ξ | 2 t sin ( | ξ | t ) | ξ | ( i ξ · R σ 0 ) + cos ( | ξ | t ) ξ ( ξ · R u 0 ) | ξ | 2 L 2 e μ 2 | ξ | 2 t sin ( | ξ | t ) | ξ | ( i ξ · R σ 0 ) L 2 e μ 2 | ξ | 2 t cos ( | ξ | t ) ξ ( ξ · R u 0 ) | ξ | 2 L 2 + O ( t n / 4 1 / 2 ) C | R σ 0 | t n / 4 C ˜ | R u 0 | t n / 4 + o ( t n / 4 ) .
Noting that | R σ 0 | 0 and | R u 0 | / | R σ 0 | 1 , by Equation (63), when t , we arrive at
u ( t ) L 2 C 4 ( | R σ 0 | + | R u 0 | ) t n / 4 .
Thus we complete the proof of Corollary 2. □

Funding

The work is partially supported by the NNSF of China (Grant No. 11101144) and the Plan For Scientific Innovation Talent of Henan Province (Grant No. 154100510012).

Acknowledgments

The author would like to thank the referees for valuable comments and suggestions.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Dunn, J.; Serrin, J. On the thermomechanics of interstitial working. Arch. Rational Mech. Anal. 1985, 88, 95–133. [Google Scholar] [CrossRef]
  2. Cahn, J.; Hilliard, J. Free energy of a nonuniform system, I. Interfacial free energy. J. Chem. Phys. 1998, 28, 258–267. [Google Scholar] [CrossRef]
  3. Gurtin, M.; Poligone, D.; Vinals, J. Two-phases binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 1996, 6, 815–831. [Google Scholar] [CrossRef]
  4. Bresch, D.; Desjardins, B.; Lin, C.-K. On some compressible fluid models: Korteweg, lubrication, and shallow water system. Commun. Partial Diff. Equ. 2003, 28, 843–868. [Google Scholar] [CrossRef]
  5. Danchina, R.; Desjardins, B. Existence of solutions for compressible fluid models of korteweg type. Ann. Inst. Henri Poincar Anal. Nonlinear 2001, 18, 97–133. [Google Scholar] [CrossRef]
  6. Haspot, B. Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 2011, 13, 223–249. [Google Scholar] [CrossRef]
  7. Haspot, B. Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension. Methods Appl. Anal. 2013, 20, 141–164. [Google Scholar] [CrossRef]
  8. Hattori, H.; Li, D. Solutions for two-dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 1994, 25, 85–98. [Google Scholar] [CrossRef]
  9. Hattori, H.; Li, D. Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 1996, 198, 84–97. [Google Scholar] [CrossRef]
  10. Gao, J.; Zou, Y.; Yao, Z. Long-time behavior of solution for the compressible Navier-Stokes-Korteweg equations in R 3. Appl. Math. Lett. 2015, 48, 30–35. [Google Scholar] [CrossRef]
  11. Kotschote, M. Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. Henri Poincare Anal. Non Lineaire 2008, 25, 679–696. [Google Scholar] [CrossRef]
  12. Tan, Z.; Wang, H.; Xu, J. Global existence and optimal L2 decay rate for the strong solutions to the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 2012, 390, 181–187. [Google Scholar] [CrossRef]
  13. Tan, Z.; Wang, Y. Large time behavior of solutions to the isentropic compressible fluid models of Korteweg type in R 3. Commun. Math. Sci. 2012, 10, 1207–1223. [Google Scholar] [CrossRef]
  14. Tan, Z.; Zhang, R. Optimal decay rates of the compressible fluid models of Korteweg type. Z. Angew. Math. Phys. 2014, 65, 279–300. [Google Scholar] [CrossRef]
  15. Wang, Y.; Tan, Z. Optimal decay rates for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 2011, 379, 256–271. [Google Scholar] [CrossRef] [Green Version]
  16. Zhang, X.; Tan, Z. Decay estimates of the non-isentropic compressible fluid models of Korteweg type in R 3. Commun. Math. Sci. 2014, 12, 1437–1456. [Google Scholar]
  17. Charão, R.C.; Ikehata, R. Note on asymptotic profile of solutions to the linearized compressible Navier-Stokes flow. arXiv, 2016; arXiv:1603.09464. [Google Scholar]
  18. Ikehata, R. Asymptotic profiles for wave equations with strong damping. J. Diff. Equ. 2014, 257, 2159–2177. [Google Scholar] [CrossRef] [Green Version]
  19. Wang, Y.-Z.; Chen, S. Asymptotic profile of solutions to the double dispersion equation. Nonlinear Anal. 2016, 134, 236–256. [Google Scholar] [CrossRef]
  20. Wang, Y.-Z.; Chen, S.; Su, M.L. Asymptotic profile of solutions to the linearized double dispersion equation on the half space R + n . Evol. Equ. Control Theory 2017, 6, 629–645. [Google Scholar] [CrossRef]
  21. Wang, Y.-Z.; Wang, Y.X. Asymptotic behavior of solutions to a class of nonlinear wave equations of sixth order with damping. Math. Methods Appl. Sci. 2017, 40, 1922–1936. [Google Scholar] [CrossRef]
  22. Wang, Y.X. On the Cauchy problem for one dimension generalized Boussinesq equation. Internat. J. Math. 2015, 26, 1550023. [Google Scholar] [CrossRef]
  23. Ikehata, R.; Soga, M. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Commun. Pure App. Anal. 2015, 14, 1759–1780. [Google Scholar] [CrossRef] [Green Version]
  24. Wang, Y.-Z.; Wang, Y.X. Optimal decay estimate of mild solutions to the compressible Navier-Stokes-Korteweg system in the critical Besov space. Math. Methods Appl. Sci. 2018, 41, 1–15. [Google Scholar] [CrossRef]
  25. Ikehata, R. New decay estimates for linear damped wave equations and its application to nonlinear problem. Math. Methods Appl. Sci. 2004, 27, 865–889. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Wang, Y. Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System. Mathematics 2019, 7, 287. https://doi.org/10.3390/math7030287

AMA Style

Wang Y. Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System. Mathematics. 2019; 7(3):287. https://doi.org/10.3390/math7030287

Chicago/Turabian Style

Wang, Yinxia. 2019. "Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System" Mathematics 7, no. 3: 287. https://doi.org/10.3390/math7030287

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop