Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System
Abstract
1. Introduction
2. Solution Formula
3. Decay Properties
4. Low Frequency Case
5. High Frequency Case
6. Asymptotic Profiles and Applications
6.1. Asymptotic Profiles
6.2. Application I
6.3. Application II
Funding
Acknowledgments
Conflicts of Interest
References
- Dunn, J.; Serrin, J. On the thermomechanics of interstitial working. Arch. Rational Mech. Anal. 1985, 88, 95–133. [Google Scholar] [CrossRef]
- Cahn, J.; Hilliard, J. Free energy of a nonuniform system, I. Interfacial free energy. J. Chem. Phys. 1998, 28, 258–267. [Google Scholar] [CrossRef]
- Gurtin, M.; Poligone, D.; Vinals, J. Two-phases binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 1996, 6, 815–831. [Google Scholar] [CrossRef]
- Bresch, D.; Desjardins, B.; Lin, C.-K. On some compressible fluid models: Korteweg, lubrication, and shallow water system. Commun. Partial Diff. Equ. 2003, 28, 843–868. [Google Scholar] [CrossRef]
- Danchina, R.; Desjardins, B. Existence of solutions for compressible fluid models of korteweg type. Ann. Inst. Henri Poincar Anal. Nonlinear 2001, 18, 97–133. [Google Scholar] [CrossRef]
- Haspot, B. Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 2011, 13, 223–249. [Google Scholar] [CrossRef]
- Haspot, B. Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension. Methods Appl. Anal. 2013, 20, 141–164. [Google Scholar] [CrossRef]
- Hattori, H.; Li, D. Solutions for two-dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 1994, 25, 85–98. [Google Scholar] [CrossRef]
- Hattori, H.; Li, D. Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 1996, 198, 84–97. [Google Scholar] [CrossRef]
- Gao, J.; Zou, Y.; Yao, Z. Long-time behavior of solution for the compressible Navier-Stokes-Korteweg equations in 3. Appl. Math. Lett. 2015, 48, 30–35. [Google Scholar] [CrossRef]
- Kotschote, M. Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. Henri Poincare Anal. Non Lineaire 2008, 25, 679–696. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, H.; Xu, J. Global existence and optimal L2 decay rate for the strong solutions to the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 2012, 390, 181–187. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, Y. Large time behavior of solutions to the isentropic compressible fluid models of Korteweg type in 3. Commun. Math. Sci. 2012, 10, 1207–1223. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, R. Optimal decay rates of the compressible fluid models of Korteweg type. Z. Angew. Math. Phys. 2014, 65, 279–300. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, Z. Optimal decay rates for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 2011, 379, 256–271. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Z. Decay estimates of the non-isentropic compressible fluid models of Korteweg type in 3. Commun. Math. Sci. 2014, 12, 1437–1456. [Google Scholar]
- Charão, R.C.; Ikehata, R. Note on asymptotic profile of solutions to the linearized compressible Navier-Stokes flow. arXiv, 2016; arXiv:1603.09464. [Google Scholar]
- Ikehata, R. Asymptotic profiles for wave equations with strong damping. J. Diff. Equ. 2014, 257, 2159–2177. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Chen, S. Asymptotic profile of solutions to the double dispersion equation. Nonlinear Anal. 2016, 134, 236–256. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Chen, S.; Su, M.L. Asymptotic profile of solutions to the linearized double dispersion equation on the half space . Evol. Equ. Control Theory 2017, 6, 629–645. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Wang, Y.X. Asymptotic behavior of solutions to a class of nonlinear wave equations of sixth order with damping. Math. Methods Appl. Sci. 2017, 40, 1922–1936. [Google Scholar] [CrossRef]
- Wang, Y.X. On the Cauchy problem for one dimension generalized Boussinesq equation. Internat. J. Math. 2015, 26, 1550023. [Google Scholar] [CrossRef]
- Ikehata, R.; Soga, M. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Commun. Pure App. Anal. 2015, 14, 1759–1780. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Wang, Y.X. Optimal decay estimate of mild solutions to the compressible Navier-Stokes-Korteweg system in the critical Besov space. Math. Methods Appl. Sci. 2018, 41, 1–15. [Google Scholar] [CrossRef]
- Ikehata, R. New decay estimates for linear damped wave equations and its application to nonlinear problem. Math. Methods Appl. Sci. 2004, 27, 865–889. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y. Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System. Mathematics 2019, 7, 287. https://doi.org/10.3390/math7030287
Wang Y. Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System. Mathematics. 2019; 7(3):287. https://doi.org/10.3390/math7030287
Chicago/Turabian StyleWang, Yinxia. 2019. "Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System" Mathematics 7, no. 3: 287. https://doi.org/10.3390/math7030287
APA StyleWang, Y. (2019). Asymptotic Profiles and Convergence Rates of the Linearized Compressible Navier–Stokes– Korteweg System. Mathematics, 7(3), 287. https://doi.org/10.3390/math7030287