The Use of the Evenness of Eigenvalues of Similarity Matrices to Test for Predictivity of Ecosystem Classifications
Abstract
:1. Introduction
2. Applications of E(λ)
2.1. Summary of the Rationale
2.2. Example of Application of E(λ)
2.2.1. Data
2.2.2. Methods
- (a)
- Are the two plant associations, as defined by species (set A), significantly separated in the space defined by environmental factors (set B)?
- (b)
- What are the environmental factors of set B that are more correlated with the two associations?
2.2.3. Results
3. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orlóci, L. Multivariate Analysis in Vegetation Research, 2nd ed.; Junk: The Hague, The Netherlands, 1978. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Siegel, S. Nonparametric Statistics: For the Behavioral Sciences; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Feoli, E.; Bressan, G. Affinità floristica dei tipi di vegetazione bentonica della Cala di Mitigliano (Massa Lubrense, Napoli). Plant Biosyst. 1972, 106, 245–256. [Google Scholar] [CrossRef]
- Biondini, M.E.; Mielke, P.W., Jr.; Redente, E.F. Permutation techniques based on Euclidean analysis spaces: A new and powerful statistic method for ecological research. Coenoses 1988, 3, 155–174. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Pillar, V.D.P.; Orlóci, L. On randomization testing in vegetation science: Multifactor comparisons of relevé groups. J. Veg. Sci. 1996, 7, 585–592. [Google Scholar] [CrossRef]
- Manly, B.F.J. Randomization, Bootstrap and Monte Carlo Methods in Biology, 3rd ed.; Chapman & Hall: London, UK, 2006. [Google Scholar]
- Feoli, E.; Gallizia Vuerich, L.; Ganis, P.; Woldu, Z. A classificatory approach integrating fuzzy set theory and permutation techniques for land cover analysis: A case study on a degrading area of the Rift Valley (Ethiopia). Community Ecol. 2009, 10, 53–64. [Google Scholar] [CrossRef]
- Burba, N.; Feoli, E.; Malaroda, M.; Zuccarello, V. Un Sistema Informativo per la Vegetazione. Software per L’archiviazione Della Vegetazione Italiana e per L’elaborazione di Tabelle. Manuale di Utilizzo dei Programmi; GEAD-EQ n.11; Università degli Studi di Trieste: Trieste, Italy, 1992. [Google Scholar]
- Burba, N.; Feoli, E.; Malaroda, M. MATEDIT: A software tool to integrate information in decision making processes. In Perspectives on Integrated Coastal Management in South America; Neves, R., Baretta, J.W., Mateus, M., Eds.; IST Press: Lisbon, Portugal, 2008. [Google Scholar]
- Dale, M.B. Knowing when to stop: Cluster concept–concept cluster. Coenoses 1988, 1, 11–31. [Google Scholar]
- Pillar, V. How sharp are classifications? Ecology 1999, 80, 2508–2516. [Google Scholar] [CrossRef]
- Goodall, D.W. Classification and ordination: Their nature and role in taxonomy and community studies. Coenoses 1986, 1, 3–9. [Google Scholar]
- Wilkinson, J.H. The Algebraic Eigenvalue Problem; Oxford University Press: London, UK, 1965. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of 524 Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Feoli, E.; Ganis, P. Comparison of floristic vegetation types by multiway contingency tables. Abstr. Bot. 1985, 9, 1–15. [Google Scholar]
- Landolt, E. Okologische Zeigerwerte zur Schweizer Flora. Ber. Geobot. Inst. ETH 1977, 64, 64–207. [Google Scholar]
- Wildi, O.; Feldmeyer-Christe, E. Indicator values (IndVal) mimic ranking by F-ratio in real world vegetation data. Community Ecol. 2013, 14, 139–143. [Google Scholar] [CrossRef]
- Wildi, O. Evaluating the predictive power of ordination methods in ecological context. Mathematics 2018, 6, 295. [Google Scholar] [CrossRef]
F | R | N | H | D | L | T | C | |
---|---|---|---|---|---|---|---|---|
Aquifolio-Fagetum cyclametosum | 2.8 | 3.3 | 2.8 | 3.5 | 3.6 | 2.5 | 3.8 | 2.4 |
Aquifolio-Fagetum carpinetosum var. Milium | 2.9 | 3.3 | 3.1 | 3.6 | 3.8 | 2.1 | 3.6 | 2.3 |
Aquifolio-Fagetum carpinetosum var. Lamium | 3.1 | 3.2 | 2.9 | 3.6 | 3.8 | 2.2 | 3.7 | 2.3 |
Aquifolio-Fagetum brachypodietosum var. Digitalis | 2.8 | 3.2 | 2.9 | 3.5 | 3.6 | 2.4 | 3.6 | 2.5 |
Aquifolio-Fagetum brachypodietosum var. Quercus ilex | 2.8 | 3.1 | 2.9 | 3.5 | 3.6 | 2.4 | 3.6 | 2.6 |
Trochiscantho-Fagetum daphnetosum mezerei | 2.9 | 3.2 | 3.0 | 3.6 | 3.8 | 2.2 | 3.0 | 2.6 |
Trochiscantho-Fagetum ranunculetosum lanuginosi | 3.0 | 3.0 | 3.1 | 3.8 | 3.9 | 2.1 | 3.0 | 2.6 |
Trochiscantho-Fagetum ranunculetosum var. Acer pseudoplatanus | 3.1 | 3.2 | 3.2 | 3.5 | 3.9 | 2.1 | 3.0 | 2.5 |
Trochiscantho-Fagetum luzuletosum var. Sesleria autumnalis | 2.8 | 3.3 | 2.8 | 3.6 | 3.8 | 2.3 | 3.2 | 2.6 |
Trochiscantho-Fagetum luzuletosum niveae | 2.9 | 3.0 | 3.0 | 3.7 | 3.9 | 2.0 | 3.1 | 2.5 |
Codes | AQ | TF | KW | pKW | E(λ) | pE(λ) |
---|---|---|---|---|---|---|
Humidity | 2.88 | 2.94 | 0.88 | 0.35 | 0.01 | 0.81 |
Reaction | 3.22 | 3.14 | 0.88 | 0.35 | 0.1 | 0.58 |
Nutrients | 2.92 | 3.02 | 1.32 | 0.25 | 0.16 | 0.64 |
Humus | 3.54 | 3.64 | 2.14 | 0.14 | 0.19 | 0.51 |
Dispersion | 3.68 | 3.86 | 4.81 | 0.03 | 0.73 | 0.01 |
Light | 2.32 | 2.14 | 3.9 | 0.05 | 0.33 | 0.10 |
Temperature | 3.66 | 3.06 | 6.8 | 0.009 | 0.94 | 0.003 |
Continentality | 2.42 | 2.56 | 2.8 | 0.09 | 0.46 | 0.07 |
Matrix X | KW | pKW | E(λ) | pE(λ) |
---|---|---|---|---|
KW | 1.00 | −0.89 | 0.96 | −0.87 |
pKW | −0.89 | 1.00 | −0.85 | 0.93 |
E(λ) | 0.96 | −0.85 | 1.00 | −0.88 |
pE(λ) | −0.87 | 0.93 | −0.88 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feoli, E.; Ganis, P. The Use of the Evenness of Eigenvalues of Similarity Matrices to Test for Predictivity of Ecosystem Classifications. Mathematics 2019, 7, 245. https://doi.org/10.3390/math7030245
Feoli E, Ganis P. The Use of the Evenness of Eigenvalues of Similarity Matrices to Test for Predictivity of Ecosystem Classifications. Mathematics. 2019; 7(3):245. https://doi.org/10.3390/math7030245
Chicago/Turabian StyleFeoli, Enrico, and Paola Ganis. 2019. "The Use of the Evenness of Eigenvalues of Similarity Matrices to Test for Predictivity of Ecosystem Classifications" Mathematics 7, no. 3: 245. https://doi.org/10.3390/math7030245
APA StyleFeoli, E., & Ganis, P. (2019). The Use of the Evenness of Eigenvalues of Similarity Matrices to Test for Predictivity of Ecosystem Classifications. Mathematics, 7(3), 245. https://doi.org/10.3390/math7030245